389 research outputs found
Progress of the ECHo SDR Readout Hardware for Multiplexed MMCs
The electron capture in Holmium (ECHo) experiment seeks to achieve sub-eV sensitivity of the electron neutrino mass through calorimetric decay spectroscopy of Ho in large arrays of cryogenic magnetic microcalorimeters (MMCs). Microwave SQUID multiplexing serves to efficiently increase the number of readout channels, thus calorimeters per array and ultimately per cryostat. A corresponding frequency multiplexing room temperature software-defined radio (SDR) system is in development to enable the readout of this increased number of MMCs per cable. The SDR consists of a custom FPGA platform that provides signal generation and analysis capabilities, as well as tailored signal conversion and analog conditioning front end electronics that enable the room-temperature-to-cryogenic interface. Ultimately, the system will read out 400 multiplexer channels with double pixel detectors through a bandwidth of 4 GHz (IEEE C band). As high-resolution data converters are limited in sample rate, the C-band is split into five sub-bands using a two-stage mixing method. In this contribution, a prototype of the heterodyne RF design is presented. It comprises one of the five 800 MHz sub-bands for a target frequency range between 4 and 8 GHz. Furthermore, the second version of the A/D converter stage is presented, capable of generating and digitizing up to five complex basebands using 1 GSs converters, the reference clocks and a flux-ramp signal. We will show first results of their single and combined characterization in the lab. The current state of the prototype hardware enables preliminary measurements, only limited in bandwidth and with slightly higher noise. Potential improvements could be derived and will be implemented in the full bandwidth, 5-sub-band RF PCB design
OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis
Background: The quantitative analysis of metabolic fluxes, i. e., in vivo activities of intracellular enzymes and pathways, provides key information on biological systems in systems biology and metabolic engineering. It is based on a comprehensive approach combining (i) tracer cultivation on C-13 substrates, (ii) C-13 labelling analysis by mass spectrometry and (iii) mathematical modelling for experimental design, data processing, flux calculation and statistics. Whereas the cultivation and the analytical part is fairly advanced, a lack of appropriate modelling software solutions for all modelling aspects in flux studies is limiting the application of metabolic flux analysis
New method for the time calibration of an interferometric radio antenna array
Digital radio antenna arrays, like LOPES (LOFAR PrototypE Station), detect
high-energy cosmic rays via the radio emission from atmospheric extensive air
showers. LOPES is an array of dipole antennas placed within and triggered by
the KASCADE-Grande experiment on site of the Karlsruhe Institute of Technology,
Germany. The antennas are digitally combined to build a radio interferometer by
forming a beam into the air shower arrival direction which allows measurements
even at low signal-to-noise ratios in individual antennas. This technique
requires a precise time calibration. A combination of several calibration steps
is used to achieve the necessary timing accuracy of about 1 ns. The group
delays of the setup are measured, the frequency dependence of these delays
(dispersion) is corrected in the subsequent data analysis, and variations of
the delays with time are monitored. We use a transmitting reference antenna, a
beacon, which continuously emits sine waves at known frequencies. Variations of
the relative delays between the antennas can be detected and corrected for at
each recorded event by measuring the phases at the beacon frequencies.Comment: 9 pages, 9 figures, 1 table, pre-print of article published in
Nuclear Inst. and Methods in Physics Research, A, available at:
http://www.sciencedirect.com/science/article/B6TJM-4Y9CF4B-4/2/37bfcb899a0f387d9875a5a0729593a
Biophotovoltaics: Green Power Generation From Sunlight and Water
Biophotovoltaics is a relatively new discipline in microbial fuel cell research. The basic idea is the conversion of light energy into electrical energy using photosynthetic microorganisms. The microbes will use their photosynthetic apparatus and the incoming light to split the water molecule. The generated protons and electrons are harvested using a bioelectrochemical system. The key challenge is the extraction of electrons from the microbial electron transport chains into a solid-state anode. On the cathode, a corresponding electrochemical counter reaction will consume the protons and electrons, e.g., through the oxygen reduction to water, or hydrogen formation. In this review, we are aiming to summarize the current state of the art and point out some limitations. We put a specific emphasis on cyanobacteria, as these microbes are considered future workhorses for photobiotechnology and are currently the most widely applied microbes in biophotovoltaics research. Current progress in biophotovoltaics is limited by very low current outputs of the devices while a lack of comparability and standardization of the experimental set-up hinders a systematic optimization of the systems. Nevertheless, the fundamental questions of redox homeostasis in photoautotrophs and the potential to directly harvest light energy from a highly efficient photosystem, rather than through oxidation of inefficiently produced biomass are highly relevant aspects of biophotovoltaics
SDR-Based Readout Electronics for the ECHo Experiment
Due to their excellent energy resolution, the intrinsically fast signal rise time, the huge energy dynamic range, and the almost ideally linear detector response, metallic magnetic calorimeters (MMC)s are very well suited for a variety of applications in physics. In particular, the ECHo experiment aims to utilize large-scale MMC-based detector arrays to investigate the mass of the electron neutrino. Reading out such arrays is a challenging task which can be tackled using microwave SQUID multiplexing. Here, the detector signals are transduced into frequency shifts of superconducting microwave resonators, which can be deduced using a high-end software-defined radio (SDR) system. The ECHo SDR system is a custom-made modular electronics, which provides 400 channels equally distributed in a 4 to 8 GHz frequency band. The system consists of a superheterodyne RF frequency converter with two successive mixers, a modular conversion, and an FPGA board. For channelization, a novel heterogeneous approach, utilizing the integrated digital down conversion (DDC) of the ADC, a polyphase channelizer, and another DDC for demodulation, is proposed. This approach has excellent channelization properties while being resource-efficient at the same time. After signal demodulation, on-FPGA flux-ramp demodulation processes the signals before streaming it to the data processing and storage backend
Tunka-Rex: the Cost-Effective Radio Extension of the Tunka Air-Shower Observatory
Tunka-Rex is the radio extension of the Tunka cosmic-ray observatory in
Siberia close to Lake Baikal. Since October 2012 Tunka-Rex measures the radio
signal of air-showers in coincidence with the non-imaging air-Cherenkov array
Tunka-133. Furthermore, this year additional antennas will go into operation
triggered by the new scintillator array Tunka-Grande measuring the secondary
electrons and muons of air showers. Tunka-Rex is a demonstrator for how
economic an antenna array can be without losing significant performance: we
have decided for simple and robust SALLA antennas, and we share the existing
DAQ running in slave mode with the PMT detectors and the scintillators,
respectively. This means that Tunka-Rex is triggered externally, and does not
need its own infrastructure and DAQ for hybrid measurements. By this, the
performance and the added value of the supplementary radio measurements can be
studied, in particular, the precision for the reconstructed energy and the
shower maximum in the energy range of approximately eV. Here
we show first results on the energy reconstruction indicating that radio
measurements can compete with air-Cherenkov measurements in precision.
Moreover, we discuss future plans for Tunka-Rex.Comment: Proceeding of UHECR 2014, Springdale, Utah, USA, accepted by JPS
Conference Proceeding
Improved measurements of the energy and shower maximum of cosmic rays with Tunka-Rex
The Tunka Radio Extension (Tunka-Rex) is an array of 63 antennas located in
the Tunka Valley, Siberia. It detects radio pulses in the 30-80 MHz band
produced during the air-shower development. As shown by Tunka-Rex, a sparse
radio array with about 200 m spacing is able to reconstruct the energy and the
depth of the shower maximum with satisfactory precision using simple methods
based on parameters of the lateral distribution of amplitudes. The LOFAR
experiment has shown that a sophisticated treatment of all individually
measured amplitudes of a dense antenna array can make the precision comparable
with the resolution of existing optical techniques. We develop these ideas
further and present a method based on the treatment of time series of measured
signals, i.e. each antenna station provides several points (trace) instead of a
single one (amplitude or power). We use the measured shower axis and energy as
input for CoREAS simulations: for each measured event we simulate a set of
air-showers with proton, helium, nitrogen and iron as primary particle (each
primary is simulated about ten times to cover fluctuations in the shower
maximum due to the first interaction). Simulated radio pulses are processed
with the Tunka-Rex detector response and convoluted with the measured signals.
A likelihood fit determines how well the simulated event fits to the measured
one. The positions of the shower maxima are defined from the distribution of
chi-square values of these fits. When using this improved method instead of the
standard one, firstly, the shower maximum of more events can be reconstructed,
secondly, the resolution is increased. The performance of the method is
demonstrated on the data acquired by the Tunka-Rex detector in 2012-2014.Comment: Proceedings of the 35th ICRC 2017, Busan, Kore
- âŠ