76 research outputs found

    Electromagnetic Transition in Waveguide with Application to Lasers

    Get PDF
    The electromagnetic transition of two-level atomic systems in a waveguide is calculated. Compared with the result in free space, the spontaneous emission rate decrease because the phase space is smaller, and meanwhile, some resonance appears in some cases. Moreover, the influence of non-uniform electromagnetic field in a waveguide on absorption and stimulated emission is considered. Applying the results to lasers, a method to enhance the laser power is proposed.Comment: 4 pages, 2 figure

    Crossover from weak to strong coupling regime in dispersive circuit QED

    Full text link
    We study the decoherence of a superconducting qubit due to the dispersive coupling to a damped harmonic oscillator. We go beyond the weak qubit-oscillator coupling, which we associate with a phase Purcell effect, and enter into a strong coupling regime, with qualitatively different behavior of the dephasing rate. We identify and give a physicaly intuitive discussion of both decoherence mechanisms. Our results can be applied, with small adaptations, to a large variety of other physical systems, e. g. trapped ions and cavity QED, boosting theoretical and experimental decoherence studies.Comment: Published versio

    Two-atom dark states in electromagnetic cavities

    Get PDF
    The center-of-mass motion of two two-level atoms coupled to a single damped mode of an electromagnetic resonator is investigated. For the case of one atom being initially excited and the cavity mode in the vacuum state it is shown that the atomic time evolution is dominated by the appearance of dark states. These states, in which the initial excitation is stored in the internal atomic degrees of freedom and the atoms become quantum mechanically entangled, are almost immune against photon loss from the cavity. Various properties of the dark states within and beyond the Raman-Nath approximation of atom optics are worked out.Comment: 8 pages, 4 figure

    Dark States and Interferences in Cascade Transitions of Ultra-Cold Atoms in a Cavity

    Get PDF
    We examine the competition among one- and two-photon processes in an ultra-cold, three-level atom undergoing cascade transitions as a result of its interaction with a bimodal cavity. We show parameter domains where two-photon transitions are dominant and also study the effect of two-photon emission on the mazer action in the cavity. The two-photon emission leads to the loss of detailed balance and therefore we obtain the photon statistics of the cavity field by the numerical integration of the master equation. The photon distribution in each cavity mode exhibits sub- and super- Poissonian behaviors depending on the strength of atom-field coupling. The photon distribution becomes identical to a Poisson distribution when the atom-field coupling strengths of the modes are equal.Comment: 15 pages including 7 figures in Revtex, submitted to PR

    Probing the quantum vacuum with an artificial atom in front of a mirror

    Full text link
    Quantum fluctuations of the vacuum are both a surprising and fundamental phenomenon of nature. Understood as virtual photons flitting in and out of existence, they still have a very real impact, \emph{e.g.}, in the Casimir effects and the lifetimes of atoms. Engineering vacuum fluctuations is therefore becoming increasingly important to emerging technologies. Here, we shape vacuum fluctuations using a "mirror", creating regions in space where they are suppressed. As we then effectively move an artificial atom in and out of these regions, measuring the atomic lifetime tells us the strength of the fluctuations. The weakest fluctuation strength we observe is 0.02 quanta, a factor of 50 below what would be expected without the mirror, demonstrating that we can hide the atom from the vacuum

    Dynamics of a Vortex in a Trapped Bose-Einstein Condensate

    Full text link
    We consider a large condensate in a rotating anisotropic harmonic trap. Using the method of matched asymptotic expansions, we derive the velocity of an element of vortex line as a function of the local gradient of the trap potential, the line curvature and the angular velocity of the trap rotation. This velocity yields small-amplitude normal modes of the vortex for 2D and 3D condensates. For an axisymmetric trap, the motion of the vortex line is a superposition of plane-polarized standing-wave modes. In a 2D condensate, the planar normal modes are degenerate, and their superposition can result in helical traveling waves, which differs from a 3D condensate. Including the effects of trap rotation allows us to find the angular velocity that makes the vortex locally stable. For a cigar-shape condensate, the vortex curvature makes a significant contribution to the frequency of the lowest unstable normal mode; furthermore, additional modes with negative frequencies appear. As a result, it is considerably more difficult to stabilize a central vortex in a cigar-shape condensate than in a disc-shape one. Normal modes with imaginary frequencies can occur for a nonaxisymmetric condensate (in both 2D and 3D). In connection with recent JILA experiments, we consider the motion of a straight vortex line in a slightly nonspherical condensate. The vortex line changes its orientation in space at the rate proportional to the degree of trap anisotropy and can exhibit periodic recurrences.Comment: 19 pages, 6 eps figures, REVTE

    The `Friction' of Vacuum, and other Fluctuation-Induced Forces

    Full text link
    The static Casimir effect describes an attractive force between two conducting plates, due to quantum fluctuations of the electromagnetic (EM) field in the intervening space. {\it Thermal fluctuations} of correlated fluids (such as critical mixtures, super-fluids, liquid crystals, or electrolytes) are also modified by the boundaries, resulting in finite-size corrections at criticality, and additional forces that effect wetting and layering phenomena. Modified fluctuations of the EM field can also account for the `van der Waals' interaction between conducting spheres, and have analogs in the fluctuation--induced interactions between inclusions on a membrane. We employ a path integral formalism to study these phenomena for boundaries of arbitrary shape. This allows us to examine the many unexpected phenomena of the dynamic Casimir effect due to moving boundaries. With the inclusion of quantum fluctuations, the EM vacuum behaves essentially as a complex fluid, and modifies the motion of objects through it. In particular, from the mechanical response function of the EM vacuum, we extract a plethora of interesting results, the most notable being: (i) The effective mass of a plate depends on its shape, and becomes anisotropic. (ii) There is dissipation and damping of the motion, again dependent upon shape and direction of motion, due to emission of photons. (iii) There is a continuous spectrum of resonant cavity modes that can be excited by the motion of the (neutral) boundaries.Comment: RevTex, 2 ps figures included. The presentation is completely revised, and new sections are adde
    • …
    corecore