202 research outputs found

    Notes from the 3rd Axion Strategy Meeting

    Full text link
    In this note we briefly summarize the main future targets and strategies for axion and general low energy particle physics identified in the "3rd axion strategy meeting" held during the AXIONS 2010 workshop. This summary follows a wide discussion with contributions from many of the workshop attendees.Comment: 5 pages, 1 figur

    Trembling cavities in the canonical approach

    Get PDF
    We present a canonical formalism facilitating investigations of the dynamical Casimir effect by means of a response theory approach. We consider a massless scalar field confined inside of an arbitaray domain G(t)G(t), which undergoes small displacements for a certain period of time. Under rather general conditions a formula for the number of created particles per mode is derived. The pertubative approach reveals the occurance of two generic processes contributing to the particle production: the squeezing of the vacuum by changing the shape and an acceleration effect due to motion af the boundaries. The method is applied to the configuration of moving mirror(s). Some properties as well as the relation to local Green function methods are discussed. PACS-numbers: 12.20; 42.50; 03.70.+k; 42.65.Vh Keywords: Dynamical Casimir effect; Moving mirrors; Cavity quantum field theory; Vibrating boundary

    New Experimental limit on Optical Photon Coupling to Neutral, Scalar Bosons

    Full text link
    We report on the first results of a sensitive search for scalar coupling of photons to a light neutral boson in the mass range of approximately 1.0 milli-electron volts and coupling strength greater than 106^-6 GeV1^-1 using optical photons. This was a photon regeneration experiment using the "light shining through a wall" technique in which laser light was passed through a strong magnetic field upstream of an optical beam dump; regenerated laser light was then searched for downstream of a second magnetic field region optically shielded from the former. Our results show no evidence for scalar coupling in this region of parameter space.Comment: pdf-file, 10 pages, 4 figures, submitted to Physical Review Letter

    External Fields as a Probe for Fundamental Physics

    Full text link
    Quantum vacuum experiments are becoming a flexible tool for investigating fundamental physics. They are particularly powerful for searching for new light but weakly interacting degrees of freedom and are thus complementary to accelerator-driven experiments. I review recent developments in this field, focusing on optical experiments in strong electromagnetic fields. In order to characterize potential optical signatures, I discuss various low-energy effective actions which parameterize the interaction of particle-physics candidates with optical photons and external electromagnetic fields. Experiments with an electromagnetized quantum vacuum and optical probes do not only have the potential to collect evidence for new physics, but special-purpose setups can also distinguish between different particle-physics scenarios and extract information about underlying microscopic properties.Comment: 12 pages, plenary talk at QFEXT07, Leipzig, September 200

    Lectures on Supersymmetry Breaking

    Get PDF
    We review the subject of spontaneous supersymmetry breaking. First we consider supersymmetry breaking in a semiclassical theory. We illustrate it with several examples, demonstrating different phenomena, including metastable supersymmetry breaking. Then we give a brief review of the dynamics of supersymmetric gauge theories. Finally, we use this dynamics to present various mechanisms for dynamical supersymmetry breaking. These notes are based on lectures given by the authors in 2007, at various schools.Comment: 47 pages. v2: minor correction

    Time-Space Noncommutativity in Gravitational Quantum Well scenario

    Get PDF
    A novel approach to the analysis of the gravitational well problem from a second quantised description has been discussed. The second quantised formalism enables us to study the effect of time space noncommutativity in the gravitational well scenario which is hitherto unavailable in the literature. The corresponding first quantized theory reveals a leading order perturbation term of noncommutative origin. Latest experimental findings are used to estimate an upper bound on the time--space noncommutative parameter. Our results are found to be consistent with the order of magnitude estimations of other NC parameters reported earlier.Comment: 7 pages, revTe

    Unsharp Degrees of Freedom and the Generating of Symmetries

    Get PDF
    In quantum theory, real degrees of freedom are usually described by operators which are self-adjoint. There are, however, exceptions to the rule. This is because, in infinite dimensional Hilbert spaces, an operator is not necessarily self-adjoint even if its expectation values are real. Instead, the operator may be merely symmetric. Such operators are not diagonalizable - and as a consequence they describe real degrees of freedom which display a form of "unsharpness" or "fuzzyness". For example, there are indications that this type of operators could arise with the description of space-time at the string or at the Planck scale, where some form of unsharpness or fuzzyness has long been conjectured. A priori, however, a potential problem with merely symmetric operators is the fact that, unlike self-adjoint operators, they do not generate unitaries - at least not straightforwardly. Here, we show for a large class of these operators that they do generate unitaries in a well defined way, and that these operators even generate the entire unitary group of the Hilbert space. This shows that merely symmetric operators, in addition to describing unsharp physical entities, may indeed also play a r{\^o}le in the generation of symmetries, e.g. within a fundamental theory of quantum gravity.Comment: 23 pages, LaTe

    Differences in osmotolerance in freshwater and brackish water populations of Theodoxus fluviatilis (Gastropoda: Neritidae) are associated with differential protein expression

    Get PDF
    The euryhaline gastropod Theodoxus fluviatilis is found in northern Germany in freshwater or in brackish water habitats in the Baltic Sea. Previous studies have revealed that individuals from both habitats are not distinguishable by morphological characters or by sequence comparison of DNA encoding 16S RNA or cytochrome C. As reported in this study, animals collected in the two habitats differ substantially in their physiological ability to adapt to different salinities. Comparison of accumulation rates of ninhydrin-positive substances (NPS) in foot muscle upon transfer of animals to higher medium salinities revealed that brackish water animals were perfectly able to mobilize NPS, while freshwater animals had only limited ability to do so. In an attempt to explore whether this difference in physiology may be caused by genetic differentiation, we compared protein expression patterns of soluble foot muscle proteins using 2D gel electrophoresis and silver staining. Of the 40 consistently detected protein spots, 27 showed similar levels in protein expression in animals collected from freshwater or brackish water habitats, respectively. In 12 spots, however, protein concentration was higher in brackish water than in freshwater animals. In four of these spots, expression levels followed increases or decreases in medium salinities. In a different set of 4 of these 12 spots, protein levels were always higher in brackish water as compared to freshwater animals, regardless of their physiological situation (14 days in artificial pond water or in medium with a salinity of 16‰). The remaining 4 of the 12 spots had complex expression patterns. Protein levels of the remaining single spot were generally higher in freshwater animals than in brackish water animals. These expression patterns may indicate that freshwater and brackish water animals of T. fluviatilis belong to different locally adapted populations with subtle genetic differentiation

    Low-Energy Signals from Kinetic Mixing with a Warped Abelian Hidden Sector

    Full text link
    We investigate the detailed phenomenology of a light Abelian hidden sector in the Randall-Sundrum framework. Relative to other works with light hidden sectors, the main new feature is a tower of hidden Kaluza-Klein vectors that kinetically mix with the Standard Model photon and Z. We investigate the decay properties of the hidden sector fields in some detail, and develop an approach for calculating processes initiated on the ultraviolet brane of a warped space with large injection momentum relative to the infrared scale. Using these results, we determine the detailed bounds on the light warped hidden sector from precision electroweak measurements and low-energy experiments. We find viable regions of parameter space that lead to significant production rates for several of the hidden Kaluza-Klein vectors in meson factories and fixed-target experiments. This offers the possibility of exploring the structure of an extra spacetime dimension with lower-energy probes.Comment: (1+32) Pages, 13 Figures. v2: JHEP version (minor modifications, results unchanged
    corecore