6 research outputs found

    Modeling Resolution of Resources Contention in Synchronous Data Flow Graphs

    Get PDF
    Synchronous Data Flow graphs are widely adopted in the designing of streaming applications, but were originally formulated to describe only how an application is partitioned and which data are exchanged among different tasks. Since Synchronous Data Flow graphs are often used to describe and evaluate complete design solutions, missing information (e.g., mapping, scheduling, etc.) has to be included in them by means of further actors and channels to obtain accurate evaluations. To address this issue preserving the simplicity of the representation, techniques that model data transfer delays by means of ad-hoc actors have been proposed, but they model independently each communication ignoring contentions. Moreover, they do not usually consider at all delays due to buffer contentions, potentially overestimating the throughput of a design solution. In this paper a technique to extend Synchronous Data Flow graphs by adding ad-hoc actors and channels to model resolution of resources contentions is proposed. The results show that the number of added actors and channels is limited but that they can significantly increase the Synchronous Data Flow graph accuracy

    Agricultural mitigation and adaptation to climate change in Yolo County, CA

    Get PDF
    This place‐based case study in an agricultural county in California’s Central Valley focused on the period of 2010–2050, and dealt with biophysical and socioeconomic issues related to both mitigation of greenhouse gas (GHG) emissions and to adaptation to an uncertain climate. In the past 100 years, changes in crop acreage has been more related to crop price and availability of irrigation water than to growing degree days during summer, and in fact, summer temperatures have increased less than winter temperatures. Econometric analysis indicated that warmer winters, as projected by Geophysical Fluid Dynamics Laboratory‐Bias Corrected Constructed Analog during 2035–2050, could result in less wheat acreage, more alfalfa and tomato acreage, and slight effects on tree and vine crops. The Water Evaluation and Planning (WEAP) model showed that these econometric projections did not reduce irrigation demand under either the B1 or A2 scenarios, but a diverse, water‐efficient cropping pattern combined with improved irrigation technology reduced demand to 12 percent below the historic mean. Collaboration during development of Yolo County’s Climate Action Plan showed that nitrous oxide (mainly from nitrogen fertilizers) was the main source (≅40 percent) of agricultural emissions. Emissions from cropland and rangeland were several orders of magnitude lower than urbanized land per unit area. A survey distributed to 570 farmers and ranchers achieved a 34 percent response rate. Farmers concerned about climate change were more likely to implement water conservation practices, and adopt voluntary GHG mitigation practices. Use of the urban growth model (UPlan) showed that channeling much or all future urban development into existing urban areas will increase ecosystem services by preserving agricultural land and open space, immensely reducing the Yolo County’s GHG emissions, and greatly enhancing agricultural sustainability
    corecore