View metadata, citation and similar papers at core.ac.uk

<
brought to you by .{ CORE

provided by Archivio istituzionale della ricerca - Politecnico di Milano

Modeling Resolution of Resources Contention in Synchronous

Data Flow Graphs

Marco Lattuada - Fabrizio Ferrandi

Received: date / Accepted: date

Abstract Synchronous Data Flow graphs are widely
adopted in the designing of streaming applications, but
were originally formulated to describe only how an ap-
plication is partitioned and which data are exchanged
among different tasks. Since Synchronous Data Flow
graphs are often used to describe and evaluate complete
design solutions, missing information (e.g., mapping,
scheduling, etc.) has to be included in them by means
of further actors and channels to obtain accurate evalu-
ations. To address this issue preserving the simplicity of
the representation, techniques that model data transfer
delays by means of ad-hoc actors have been proposed,
but they model independently each communication ig-
noring contentions. Moreover, they do not usually con-
sider at all delays due to buffer contentions, potentially
overestimating the throughput of a design solution.

In this paper a technique to extend Synchronous
Data Flow graphs by adding ad-hoc actors and chan-
nels to model resolution of resources contentions is pro-
posed. The results show that the number of added ac-
tors and channels is limited but that they can signifi-
cantly increase the Synchronous Data Flow graph ac-
curacy.

Keywords Synchronous Data Flow Graphs - Data

Transfers - Buffers - Contention

M. Lattuada - F. Ferrandi

Politecnico di Milano - Dipartimento di Elettronica, Infor-
magzione e Bioingegneria

Via Ponzio 34/5

20133 Milano, Italy

E-mail: marco.lattuada@polimi.it, fabrizio.ferrandi@polimi.it

1 Introduction

The reduced time-to-market and the increased com-
plexity of Multiprocessors Systems on Chip require us-
age of high level abstraction descriptions during early
phases of embedded system design flow. Streaming pro-
cessing (i.e., applying a set of elaborations in sequence
on an input data stream) is becoming one of the most
prominent paradigms in this type of design, since it
characterizes most of the video and audio elaboration
applications and allows to easily extract parallelism.
Synchronous Data Flow (SDF) graphs [I] are one of
the most common models of computation used to de-
scribe streaming applications. Being a well known and
widely adopted formalism, several methodologies and
tools to analyze and synthesize design solutions start-
ing from them exist. The natively described information
is limited: only the decomposition in tasks of an appli-
cation and which data these tasks have to exchange
are well described. Other important aspects, such as
communication delays, which are necessary to analyze
and evaluate a design solution, are not described. This
missing information can be associated with the SDF
graph, but its direct integration in the graph makes
analyses and exporting of the solutions easier. The in-
tegration is usually implemented by adding new actors
and channels to the initial SDF graph. For example, a
scheduling solution can be integrated in a SDF graph
[2] by adding actors and channels which force the se-
quential execution of the actors mapped on the same
processing element, guaranteeing the execution order
specified in the design solution. The computed through-
put of the enriched graph in this way implicitly takes
into account the scheduling solution, reducing the over-
estimation with respect to the throughput computed
analyzing the initial SDF graph.

https://core.ac.uk/display/55151186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Marco Lattuada, Fabrizio Ferrandi

Even if data exchanged between actors are explic-
itly modeled by tokens, the details of the communica-
tion performances are not explicitly described by SDF
graphs, which model them as instantaneous. To over-
come this limitation, several methodologies (e.g., [3,
[4]) have been proposed which detail inter-actors com-
munications by adding new actors. These methodolo-
gies however focus only on the delay of the single com-
munications and they do not correctly model communi-
cation interactions overestimating the throughput. More-
over, communication infrastructures (e.g., buses, net-
works on chip) are not the only resources which have
to be considered in the implementation of a channel. In
order to complete a data transfer, the destination buffer
must have enough available space to receive the data.
This space, thanks to the properties of SDF graphs,
can be computed and optimized at design time. Like
other resources (e.g., processing elements, networks),
buffers can potentially be contended by different data
transfers or actors. Ignoring these contentions is not
possible because they can reduce the actual application
throughput and make some design solutions infeasible.

In this paper a technique to model the delays due
to resolution of resources contentions is proposed. The
technique starts from a SDF graph, and after adding
actors to model delays of the single channels, adds fur-
ther actors and channels to serialize accesses to all the
contended resources.

This paper is organized as follows. Section Pl presents
the related works, Section[3describes the proposed tech-
nique whose experimental evaluation is presented in
Section [] and finally Section [draws the conclusions
of this paper.

2 Related Works

The enrichment of data flow graphs to include a design
solution has been proposed in several works. For exam-
ple, SynDEx [5] implements the Algorithm Architecture
Adequation (AAA) methodology which combines infor-
mation about the algorithm to be implemented (de-
scribed by a data flow graph called Software graph) with
information about the target architecture (described by
a Hardware graph) to produce a data flow graph de-
scribing the details of the implementation solution. This
tool however has some limitations: it is not open source
and it has its own model of computation which does not
allow schedulability analysis. To overcome these limits,
Pelcat et al. reimplemented AAA in Preesm [6]. This
tool can start its analysis from algorithms described
by means of Synchronous Data Flow graphs, but these
are transformed into Homogeneous SDF and then in
Directed Acyclic Graph before computing scheduling.

Moreover, schedule information is not directly embed-
ded in the analyzed graph, but is provided in form of
Gantt diagram and off-graph annotations.

Both scheduling and mapping are instead directly
described by the Interprocessor Communication SDF
Graphs (IPC graphs) proposed by Bambha et al. [7].
This type of graphs is built starting from a Synchronous
Data Flow representing the algorithm to be implemented:
it describes the sequence of actor activations for each
processing element and the communications among them.
The graph is not an enriched version of the application
SDF graph, but it is built from scratch: in this way
some information (e.g., characteristics of the channels
connecting actors mapped on the same processing el-
ement) of the analyzed application is lost. Moreover,
also in this case, initial SDF graphs have to be trans-
formed into Homogeneous ones, so size of the graphs to
be analyzed can potentially explode.

Other works propose to integrate design solution di-
rectly in the Synchronous Data Flow graph to refine
throughput analyses. For example, in [2] Damavand-
peyma et al. propose a technique to include scheduling
information in a SDF graph. This technique adds new
channels and new actors to the original graph to prevent
simultaneous execution of actors assigned to the same
processing element. The throughput computed on the
modified graph does not take into account the commu-
nication delays, so the performances provided by dif-
ferent types of interconnections (e.g., buses, networks
on chip) cannot be easily evaluated on these enriched
SDF graphs. This type of approach has been extended
in [§] to model pipelined applications: additional actors
are added to model the synchronization between the
different stages of the pipeline.

Other techniques allow to integrate information about
communication performances in the SDF graphs. In [3]
the delay for sending a token on a connection between
different processing elements is modeled by a single ac-
tor, whose execution time corresponds to the delay to
be modeled. The original communication channel is re-
placed by this new actor and by two channels (ingoing
to and outgoing from it). A self-edge is added to each
new actor to enforce the sequentiality of tokens trans-
mission. A more complex model is proposed by Holzen-
spies et al. [4]: each original channel is replaced by a
cycle composed of three actors representing receiving,
processing and transmission of tokens. The first and
the last actor make reading and writing delays explicit,
refining the analyzed model.

These techniques only model the delay of isolated
communications. A more complex model is proposed
by Bennour et al. in [9] where two different aspects of
an architecture are considered. The first aspect is the

Modeling Resolution of Resources Contention in Synchronous Data Flow Graphs 3

presence of processing elements with limited local mem-
ory: if the tokens to be consumed by an actor cannot
be locally stored, an external memory has to be ex-
ploited. The induced data transfers are described by
means of five new actors and some new channels. The
second aspect is the interconnection infrastructure and
the introduced delay in sending data from a processing
element to another one. With respect to previously pre-
sented works, the communication is described in a more
accurate way: three actors are added for each channel
respectively modeling the sending latency, the trans-
mission latency and the delay for waiting the Time Di-
vision Multiple Accesses slot. The problem of modeling
the effects of communication resources contentions is
not considered since the use of time slots prevents it.

The contention of communication resources is con-
sidered in [I0]: the authors describe the scheduling as
a constraint based problem where access in mutual ex-
clusion to a communication resource is a constraint.
However, the constraints are not directly included in
the graph representation, making more difficult to in-
tegrate the methodology proposed by the authors in
existing design frameworks.

3 Modeling Resolution of Resources Contention

The proposed methodology aims at refining analyses
performed on SDF graphs by including in them infor-
mation about how different accesses to the same re-
sources have been serialized to resolve contentions. This
further information not only increases the accuracy of
the results obtained during evaluation of the design
solutions, but preventing optimistic evaluations better
guarantees that produced solutions respect time con-
straints. Moreover, it also allows to identify solutions
which are actually infeasible because of the memory
contentions. The analyses performed by considering this
information in a separate way (i.e., without embedding
it into the SDF graph) are possible, but can be much
more complex. For examples, approaches like the ones
presented in [6] and [7] require to transform the ana-
lyzed SDF graph in a Homogeneous SDF, potentially
increasing in a very significant way the size of the graph
to be analyzed and so the complexity of the rest of the
flow [T1].

The methodology can target different types of com-
munication infrastructures, from simple shared buses to
complex networks on chip. Different levels of detail can
be adopted in the modeling (i.e., different number of
actors and channels). Ideally the communication infras-
tructure should be described at the same level of detail
of the rest of the system (i.e., algorithms and processing
elements). More accurate communication models can

increase the complexity of the SDF analyses without
significantly increasing the overall accuracy because of
the other approximations of the complete model. Nev-
ertheless, communication and memory resources con-
tentions cannot be completely ignored since their im-
pact on the execution time can be very significant.

The methodology does not support modeling of run-
time decisions, like the dynamic routing of the different
communications on a network on chip. However, since
one of the main properties of the SDF graphs is the
static schedulability of actors, it seems natural to ex-
tend this property also to channels. In a similar way
different types of buffer implementations are supported,
from processing elements with local single port mem-
ory to complex memory architectures where each buffer
implementation is independent.

The input of the proposed methodology is a SDF
graph representing the application to be implemented
and a complete design solution which must include three
types of information:

— mapping and scheduling of the actors, i.e., to which
processing element each actor has been assigned and
in which order the actors mapped to the same pro-
cessing element have to be executed;

— mapping and scheduling of the channels, i.e., to which
communication device each channel has been as-
signed and in which order the data of channels mapped
to the same device have to be transferred;

— allocation of buffers, i.e., to which (part of) device
memory each buffer has been assigned.

How the design solution to be represented is generated
is out of the scope of this paper. The output of the
proposed methodology is the initial SDF graph enriched
with all the information about the design solution.

The proposed methodology is described by Algo-
rithm [I] where:

— each channel ¢; is characterized as ¢; = {s;, t;, pi, di, i}
where s; is the actor source, t; is the target actor,
p; is the number of tokens produced by the source
actor, d; is the number of tokens consumed by the
target actor, and 4; is the number of initial tokens
of the channel;

— AddActor(a,t) adds an actor a whose execution
time is ¢ to the SDF graph;

— AddChannel(c, s, t, p, d, i) adds a channel ¢
connecting s to t; p and d are the number of tokens
produced and consumed by s and ¢ respectively, i is
the number of initial tokens;

— AddScheduling(pe) models the scheduling of a pro-
cessing element pe using the technique presented in

21;

Marco Lattuada, Fabrizio Ferrandi

Algorithm 1: Code Analysis.

1 foreach c¢; = {s;,ti,pi,di,i;} € C do

2 if Mapping(s;)#Mapping(t;) then

3 Remove(c;)

a AddActor (ac;,Time (c;,Mapping(c;)))
5 AddChannel (ncl;, s;, aci, pi, 1, 0)
6 AddChannel (nc2;, ac;, ti, 1, d;, ;)
7 end

8 end

9 foreach processing element p; do

10 | AddScheduling(p;)

11 end

12 foreach communication devices n; do

18 | AddScheduling(n;)

14 end

15 foreach memory location m; do

16 foreach writing w; of m; do

17 r; =PreviousReading(m;, w;)

18 if GetActor(w;) can be executed before GetActor(r;)
then

19 | Serialize(GetActor(r;), GetActor(w;))

20 end

21 end

22 end

— Mapping(a) returns on which processing element an
actor a is mapped;

— Time(c,n) returns the communication time for a
single token of a channel ¢ when implemented on a
communication device n;

— PreviousReading(m,w) given a memory location m
and a writing w returns the last reading which pre-
cedes w; if w is the first writing of the iteration,
return the last reading of the (previous) iteration;

— GetActor (o) given a memory operation o returns
the actor which performs it;

— Serialize(a,b) adds the actor and the channels
necessary to force the postponing of execution of
actor b after the ending of execution of actor a.

The following main phases can be identified in the
algorithm:

1. Communication modeling (lines[-B)): this step mod-
els the delays of single communications in absence
of resource contentions.

2. Processing resources contention modeling (lines [-
[[T)): this step models the delays due to contention
in accessing processing elements.

3. Communication resources contention modeling (lines
- [[4): this step models the delays due to con-
tention in exploiting communication infrastructure.

4. Memory resources contention modeling (lines -
22)): this step models the delays due to contention
in exploiting buffers.

In the following each step of the algorithm will be
described in detail and its application to an example
will be shown. For the sake of simplicity, it is assumed
that the target architecture considered for the example

Fig. 1 Example of SDF graph.

each one with a local memory of 64KB, connected by a
bus. The application example is described by the SDF
graph of Fig. [I (rates equal to 1 have been omitted):
execution time of each actor is 15ms, the transmission
of a token on the bus requires 2.5ms and all the tokens
are 8KB large. The mapping solution which has to be
included in the SDF graph of Fig. [is: Py, P, Py and
Ps on CPU1, P, on CPU2 and P3; on CPU3. The
scheduling solution, expressed as the Periodic Static
Order Schedule (PSOS) of each processing element, is:
PSOScpu1 = {Po, P1, Py, Ps}, PSOScpy2 = {P2’},
PSOScpyus = {Ps}. Since the considered architecture
contains only one bus, all the communications are mapped
on it in this order: (P(), PQ), (PQ, Pg), (Pg, P5), (Pg, P4),
(Ps, Py).

3.1 Communication modeling

This step of the proposed methodology (lines [Ilg]) aims
at finalizing the detailed description of the considered
solution in absence of resources contentions. Before this,
the channels have to be classified in intra-processor and
inter-processors. The formers connect actors mapped on
the same processing element, so their communication
delays can be considered null and they will be ignored in
this phase of the methodology flow. The latters connect
actors mapped on different processing elements, so they
introduce communication delays in the application. For
the sake of simplicity the approach proposed in [3] is
applied to model the delay introduced by a communica-
tion. More complex approaches like the ones proposed
in [], [9 can however be integrated in the proposed
methodology. Given a channel ¢; = {s;,t;,pi, d;, %}, if
s; and t; are mapped on different processing elements, ¢;
is removed from the SDF graph and replaced with two
channels and one actor. Since the added actor repre-
sents the communication, its execution time represents

is composed of three homogeneous processors (CPU1, C PU2hE Eii3junication delay, so its actual value depends

Modeling Resolution of Resources Contention in Synchronous Data Flow Graphs 5

Fig. 2 Example of SDF graph with Communication Actors.

on the particular communication device on which it
has been mapped. The delay to be considered is the
transmission of a single token on the communication
infrastructure when this is free (i.e., in absence of con-
tention).

When mapping solution proposed in the previous
section is applied to the example of Fig. [II channels
(Po, Pg), (PQ, Pg), (Pg, P4), (P3, P4) and (P3, P5) become
inter-processors channels. To model the delays, five ac-
tors Cy, C1, Cy, C3, and Cy are added: the resulting
SDF graph is shown in Fig.

3.2 Processing resources contention modeling

In this phase of the proposed methodology (lines [GHITI)
the already pre-processed SDF graph describing the
application is enriched by applying the methodology
described in [2]. This methodology analyzes the SDF
graph looking for actors mapped on the same process-
ing element which can potentially be executed at the
same time and adds the opportune actors and chan-
nels to force their serial execution. The order of exe-
cution to be forced is specified by the scheduling solu-
tion. The methodology assumes that all the instances
of the same actor are mapped on the same process-
ing element. If the mapping solution does not satisfy
this assumption, the actors mapped on different pro-
cessing elements are replicated so that all the instances
of a replica are mapped on a single processing element.
The result is a SDF graph where execution of actors
mapped on the same processing element is serialized by
the added actors and channels.

The only added channel for modeling the schedule
in the example is the self-edges on actor Ps.

3.3 Communication resources contention modeling

Next step of the proposed methodology (lines [[2HI4)
concerns modelization of resolution of communication

T -, TN

I \ - \ - \
\S’2 /<- \613 /4- \S'1 /

A
1
1

1

|
! \
(A

Fig. 3 Examples of SDF graph including modeling of reso-
lution of communication resources contentions.

resources contentions. The same approach adopted to
model the scheduling on processing elements is adopted
also for communication devices. It is not necessary to
force the order of all the communications: some of them
can be already serialized because of implicit depen-
dences induced by original and previously added ac-
tors and channels. The execution time of actors added
during this step is 0 since they do not model the imple-
mentation of any particular activity, but only force the
sequential execution of data transfers.

In this intermediate step the communication actors
have to be considered differently from the processing ac-
tors since the formers can be mapped on more than one
resource. Duplication of communication actors to model
this aspect cannot be adopted since it does not guar-
antee the contemporaneous usage of all the resources
and so it does not guarantee the feasibility of the solu-
tion. For example, suppose to have an architecture with
two buses connected by a bridge and suppose that the
implementation of a channel uses both of them. If the
usage of each bus would be represented by a separate
actor, the second actor could be scheduled not imme-
diately after the first. In this case a buffer would be re-
quired on the bridge to store the data after the first half
of the communication, but this buffer can be not avail-
able on the target architecture, making the computed
solution infeasible. In the proposed methodology, to
guarantee the synchronization and the correct schedula-
bility, the communication actors mapped on more than
one resource are not duplicated, but each their instance
is assigned to the Periodic Static-Order Schedules of all
the resources on which they are mapped. In this way
scheduling of communication actors is correctly mod-
eled and there is no need to differentiate them from
processing actors in the next step and in the produced
Synchronous Data Flow graph.

Marco Lattuada, Fabrizio Ferrandi

Fig. Bl shows the results of applying all the method-
ology steps described until now to the example of Fig.[Il
The self-edge of P, is added to model the scheduling of
CPU?2, the self-edges of Cy and Cy are added to model
the impossibility of transferring tokens in parallel on
the same channel. Actor Sy is added to postpone the
execution of communication C; after Cp; the other two
actors (i.e., S1 and S3) are added to serialize the execu-
tion of Cy, C3 and C4 (channel (S7,Cy) can be omitted
because of transitivity). Note that there is no need to
force the execution of Cy after C; since this is already
imposed by Ps.

3.4 Memory resources contention modeling

The last phase of the proposed methodology (lines [[5+
22)) consists of integrating in the SDF graph informa-
tion about resolution of memory devices contentions.
One of the main advantages of adopting SDF graphs
to represent design solutions consists of the possibility
of statically scheduling the execution of the different
actors and so of statically computing the correspond-
ing throughput and buffer size boundaries. However,
since memory can be a significantly limited resource in
an embedded multiprocessor system, it is possible that
in a design solution different buffers share the same
physical memory locations. For this reason, computa-
tional and communication devices are not the only re-
sources contended by different actors and channels. A
design solution has to resolve the possible contentions
of memory devices, otherwise an overestimation of the
real throughput can occur or the implemented solution
can produce erroneous results.

In the following it is assumed as most general case
that all the input and all the output data of each ac-
tor can be allocated in a (distributed) shared mem-
ory. Usage of private memories potentially simplifies
the problem since they reduced the possible resource
contentions.

For each pair of actors a; and a; such that a; can
be executed before a; (even not consecutively and even
assigned to different resources), a design solution must
satisfy the following conditions to guarantee its correct
implementation:

— input and output data of a; do not share any mem-
ory locations with input data of a; or

— input data of a; and input data of a; share some
memory locations, but a; has already been executed
when input data of a; are written or

— output data of a; and input data of a; share some
memory locations, but data produced by a; have
already been read when input data of a; are written.

If none of the previous conditions is satisfied, the input
data of a; can overwrite other data that have not yet
been read or can be overwritten before their reading
potentially introducing computation errors. To avoid
these issues, the possible contentions of memory re-
sources have to be resolved in a design solution and
information about the resolutions has to be included
in the enriched SDF graph. Considering the statical
schedulability of a SDF graph, the resolution of a con-
tention simply consists of imposing the sequence of ac-
cesses to the contended memory locations such that
at least one of the previous conditions holds. This se-
quence will be modeled in the enriched SDF graph by
forcing the writing of a memory location to be exe-
cuted after all its previous readings. Note that a reading
can never be executed before the corresponding writing
because of the dependence in the initial SDF graph.
The actors and channels added in this phase can intro-
duce deadlocks in the produced Synchronous Data Flow
graph. This deadlock signals the infeasibility of the con-
sidered design solution due to a deadlock in acquisition
of resources by two processing actors: design solution
will have to be modified (e.g., by changing memory al-
locations or actor scheduling) to make it actually im-
plementable.

For the sake of brevity, the details about the buffers
mapping of the example has not been reported. Because
of the limited size of the memory of C PU; where P, and
Ps5 are mapped, in all the possible buffer mappings the
target buffers of channels (Cy, Ps) and (Cy, Py) share
some memory locations (the sum of their required mem-
ory is larger than the available). Usage of these mem-
ory locations have to be serialized to resolve their con-
tention. Since Cs is scheduled before Cy4, the former will
write data before the latter. Ps has to read data written
by Cs before Cy overwrites them, so Ps has to be ex-
ecuted before C4. The proposed methodology adds the
actor M7 to model this order as shown in Fig.] where
the final SDF graph is presented.

This graph contains a cycle without initial tokens
composed of C4, P;, Ps and M; which introduces a
deadlock: the produced SDF graph correctly models
the actual infeasibility of the design solution. Note that
transforming the solution by changing the execution or-
der of Cy after Cy makes it implementable.

4 Experimental Evaluation

To evaluate the proposed methodology, this has been
implemented in a C++ prototype which exploits a sim-
ple list-based heuristic [12] to generate the design solu-
tion to be represented. SDF3 [13], a tool for the anal-
ysis and the transformation of SDF graphs, has been

Modeling Resolution of Resources Contention in Synchronous Data Flow Graphs 7

C1 @ 5—>’\ng

Fig. 4 Examples of SDF graph including modeling resolu-
tions of all resources contentions.

exploited to compute the different throughputs after
the graph transformations.

The methodology has been applied to the set of SDF
graphs (distributed with SDF3) modeling real applica-
tions: H263 Decoder [14] and Encoder [I5], Modem Fil-
ter |[I6], MP3 Decoder [14], MP3 Playback [17], Sample-
Rate Converter [16] and Satellite Receiver [I8]. The
characteristics of the analyzed SDF graphs are reported
in Table [l

Different target architectures have been considered.
For the sake of simplicity and to highlight the effects of
modeling communication infrastructure contention, all
the considered architectures are composed of four ho-
mogeneous processors, but differ in the communication
infrastructure which connects them and in the number
of modules of local memories:

— Crossbar: there is a dedicated channel for each pair
of processors; the local memory of each processor is
infinite;

— Network on Chip: there are two parallel communica-
tion channels; each processor has two memory mod-
ules;

— Shared Bus: there is a unique communication chan-
nel; each processor has one memory module.

The communication time is modeled as linearly depen-
dent on the size of the token and it is the same for all
the architectures: in this way the effects of the commu-
nication resources contentions can be isolated and mea-
sured. Since the benchmarks require buffers with very
different sizes, the memory modules have been differ-
ently sized for each analyzed benchmark (i.e., the tar-
get architectures for each benchmark are different) in
order to obtain significant and realistic results: the size

of a memory module is the smallest which allows to im-
plement the selected mapping and scheduling solution.
For each benchmarks four SDF graphs are built:

— Without Communication Contention: it is the initial
SDF graph enriched with scheduling actors mod-
eling Periodic Static-Order Schedules of processing
elements and communication actors modeling com-
munication delays;

— Crossbar: it is the Without Communication Con-
tention SDF graph enriched with actors modeling
serialization of communications between each pair
of processing elements;

— Network on Chip: it is the Without Communication
Contention SDF graph enriched with actors model-
ing serialization of accesses to the Network on Chip
and resolution of memory devices contentions;

— Shared Bus: it is the Without Communication Con-
tention SDF graph enriched with actors modeling
serialization of accesses to the shared bus and reso-
lution of memory devices contentions.

The resolution of memory devices contentions has been
modeled only in the last two graphs since in the first
two presence of infinite memory is assumed.

The right part of Table[Mlshows the number of added
actors and channels with respect to the Without Com-
munication Contention SDF graphs. Table 2l shows the
computed throughput for each architecture and its dif-
ference with respect to the throughput computed ig-
noring resolution of communication and memory de-
vices contentions. All the throughputs have been com-
puted with SDF3 since direct profiling or simulation
of the applications is not possible (the actual imple-
mentations of the applications are not provided). It
can be easily inferred that by adding a limited num-
ber of actors and channels it is possible to describe in
a more detailed way the analyzed solution, obtaining
much more accurate throughput results. The impact of
communications and memory accesses serialization due
to resources contentions can indeed be very significant
and heavily depends on the communication and mem-
ory architectures. For example, the results on Sample-
Rate Converter and Satellite Receiver show how this
aspect can introduce a performance overhead of more
than 50%.

Even admitting a complex network architecture which
guarantees an high level of parallel communication, like
in the case of Crossbar interconnection, the resources
contentions cannot be ignored. Multiple parallel com-
munications at a time are allowed but only if they do
not share the same pair of processing elements. On the
contrary, the communications between the same pair of
processing elements (e.g., transfer of multiple tokens on

Marco Lattuada, Fabrizio Ferrandi

Table 1 Size of the analyzed SDF graphs.

Number of Added Actors and Channels
Without Communication Contention Crossbar NoC Shared Bus
Benchmark Actors Channels Actors Channels Actors Channels Actors Channels
H.263 Decoder 7 13 0 +6 0 +6 +2 +11
H.263 Encoder 10 17 0 +5 +2 +11 +4 +17
Modem Filter 20 43 0 +4 +1 +7 +3 +12
MP3 Decoder (block level) 31 55 0 +17 +3 +26 +7 +36
MP3 Decoder (granule level) 31 55 0 +17 +4 +28 +5 +32
MP3 Playback 8 16 0 +4 +2 +10 +4 +15
Sample-Rate Converter 11 21 0 +6 +1 —+9 +2 +12
Satellite Receiver 44 93 0 +5 +3 +14 +7 +22

Table 2 Effects of communication resources contentions on application throughput. Without Communication Contention is
the throughput computed on the SDF graph which does not model communication resource contention; Crossbar, Network on
Chip and Shared Bus are the throughputs computed on the graphs which model the resolution of resources contentions on the
analyzed target architectures and their difference with respect to Without Communication Contention throughput.

Throughput

Benchmark Without Communication Contention Crossbar Network on Chip Shared Bus

H.263 Decoder 3.01-10°° 3.01-10-° | 0.00% 3.01-10°% | 0.00% 3.01-10-° | 0.00%
H.263 Encoder 7.44-1077 7.44-1077 | 0.00% 7.44-1077 | 0.00% 7.11-1077 | 3.99%
Modem Filter 2.63-1072 2.12-1072 | 19.39% || 2.12-1072 | 19.39% || 1.70-1072 | 35.36%
MP3 Decoder (block level) 2.73-1077 2.67-1077 | 2.25% 2.67-1077 | 2.25% 2.14-1077 | 19.85%
MP3 Decoder (granule level) 2.74-1077 2.68-107" 2.19% 2.68-1077 2.19% 1.93-1077 | 29.56%
MP3 Playback 5.90 - 10~ 5.90-107% | 0.00% 5.90-107% | 0.00% 4.74-107% | 19.66%
Sample-Rate Converter 1.04-1073 3.40-10"% | 67.31% || 3.40-107* | 67.31% || 3.40-10"% | 67.31%
Satellite Receiver 9.47-1074 7.66-10"% | 19.11% || 5.24-107% | 44.66% || 4.16-107°¢ | 56.07%

the same channel) have to be serialized decreasing the
application throughput (like in Modem Filter, Sample-
Rate Converter and Satellite Receiver). The through-
put of other applications is instead influenced by mod-
eling resolution of resources contentions only if this lim-
its the number of parallel communications. Depending
on their parallelism degree, their throughputs start to
decrease when number of parallel communications is re-
duced to 2, (Network on Chip) like Satellite Receiver,
or when it is reduced to 1 (Shared Bus), like Modem
Filter and MP3 Decoder. The resolution of memory
accesses contentions further reduce the throughput by
making infeasible some of the design solutions initially
computed by the list based heuristic. Finally, there are
some applications (H.263 Decoder and H.263 Encoder)
where modeling of resolution of resources contentions
do not decrease significantly the computed throughput
since communication takes much less than processing.

5 Conclusion

Evaluation of the performances of a streaming applica-
tion can be easily obtained by computing the through-
put of the corresponding SDF graph. In order to get ac-
curate results just by analyzing this graph, information
about the mapping, the scheduling, the communication
and the buffers allocation of a design solution has to
be integrated as much as possible in it. State of the art
techniques well model independent transfers of data,

but they do not take into account possible resources
contentions.

In this paper, a methodology to include this infor-
mation in the analyzed SDF graph is proposed. Exper-
imental results show how the few actors and channels
added to the SDF graph allow to significantly improve
the accuracy of its analyses.

References

1. E.A. Lee and D.G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, 75(9):1235 — 1245, sept. 1987.

2. Morteza Damavandpeyma, Sander Stuijk, Twan Basten,
Marc Geilen, and Henk Corporaal. Schedule-Extended Syn-
chronous Dataflow Graphs. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on,
vol.32, no.10, pp.1495,1508, Oct. 2013

3. S. Stuijk, T. Basten, M. C. W. Geilen, and H. Corpo-
raal. Multiprocessor resource allocation for throughput-
constrained synchronous dataflow graphs. In Proceedings
of the 44th annual Design Automation Conference, DAC
07, pages 777-782, New York, NY, USA, 2007. ACM.

4. P.K.F. Holzenspies, G.J.M. Smit, and J. Kuper. Mapping
streaming applications on a reconfigurable mpsoc platform
at run-time. In System-on-Chip, 2007 International Sym-
postum on, pages 1 —4, nov. 2007.

5. Y. Sorel. Massively parallel computing systems with real
time constraints: the Algorithm Architecture Adequation
methodology”. In Massively Parallel Computing Systems,
1994., vol., no., pp.44,53, 2-6 May 1994

6. Maxime Pelcat, Jonathan Piat, Matthieu Wipliez, Slahed-
dine Aridhi, and Jean-Frangois Nezan. An Open Framework
for Rapid Prototyping of Signal Processing Applications.
EURASIP J. Embedded Systems, January 2009.

Modeling Resolution of Resources Contention in Synchronous Data Flow Graphs

7. N. K. Bambha, V. Kianzad, M. Khandelia, and S. S. Bhat-
tacharyya. Intermediate representations for design automa-
tion of multiprocessor dsp systems. Design Automation for
Embedded Systems, vol. 7, no. 4, pp. 307-323, 2002.

8. M. Lattuada, and F. Ferrandi. Modeling pipelined ap-
plication with Synchronous Data Flow graphs FEmbedded
Computer Systems: Architectures, Modeling, and Simula-
tion (SAMOS XIII), pp.49,55, 15-18 July 2013.

9. I. Bennour, D. Sebai, and A. Jemai. Modeling sw to hw
task migration for mpsoc performance analysis. In De-
sign and Technology of Integrated Systems in Nanoscale
Era (DTIS), 2010 5th International Conference on, pages
1 -6, march 2010.

10. Jun Zhu, I. Sander, and A. Jantsch. Constrained global
scheduling of streaming applications on mpsocs. In Design
Automation Conference (ASP-DAC), 2010 15th Asia and
South Pacific, pages 223 —228, jan. 2010.

11. A.-H Ghamarian, M. C W Geilen, S. Stuijk, T. Bas-
ten, A.J M Moonen, M.J.G. Bekooij, B.D. Theelen, and
M.R. Mousavi. Throughput Analysis of Synchronous Data
Flow Graphs. Application of Concurrency to System De-
stgn, 2006. ACSD 2006. Sizth International Conference on,
pp-25,36, 28-30 June 2006.

12. Edward Ashford Lee and David G. Messerschmitt. Static
scheduling of synchronous data flow programs for digital
signal processing. IEEE Trans. Comput., 36(1):24-35, Jan-
uary 1987.

13. S. Stuijk, M. Geilen, and T. Basten. sdf3: Sdf for free.
In Application of Concurrency to System Design, 2006.
ACSD 2006. Sixzth International Conference on, pages 276
— 278, june 2006.

14. Sander Stuijk, Marc Geilen, and Twan Basten.
Throughput-buffering trade-off exploration for cyclo-static
and synchronous dataflow graphs. IEEE Trans. Comput.,
57(10):1331-1345, October 2008.

15. Hyunok Oh and Soonhoi Ha. Fractional rate dataflow
model and efficient code synthesis for multimedia applica-
tions. SIGPLAN Not., 37(7):12-17, June 2002.

16. Shuvra S. Bhattacharyya, Praveen K. Murthy, and Ed-
ward A. Lee. Synthesis of embedded software from syn-
chronous dataflow specifications. J. VLSI Signal Process.
Syst., 21(2):151-166, June 1999.

17. Maarten H. Wiggers, Marco J. G. Bekooij, and Gerard
J. M. Smit. Efficient computation of buffer capacities for
cyclo-static dataflow graphs. In Proceedings of the 44th an-
nual Design Automation Conference, DAC 07, pages 658—
663, New York, NY, USA, 2007. ACM.

18. S. Ritz, M. Willems, and H. Meyr. Scheduling for opti-
mum data memory compaction in block diagram oriented
software synthesis. In Acoustics, Speech, and Signal Pro-
cessing, 1995. ICASSP-95., 1995 International Conference
on, volume 4, pages 2651 —2654 vol.4, may 1995.

	Introduction
	Related Works
	Modeling Resolution of Resources Contention
	Experimental Evaluation
	Conclusion

