21 research outputs found

    Spin dynamics in finite cyclic XY model

    Full text link
    Evolution of the z-component of a single spin in the finite cyclic XY spin 1/2 chain is studied. Initially one selected spin is polarized while other spins are completely unpolarized and uncorrelated. Polarization of the selected spin as a function of time is proportional to the autocorrelation function at infinite temperature. Initialization of the selected spin gives rise to two wave packets moving in opposite directions and winding over the circle. We express the correlation function as a series in winding number and derive tractable approximations for each term. This allows to give qualitative explanation and quantitative description to various finite-size effects such as partial revivals and transition from regular to erratic behavior.Comment: v2: substantially extended; v3: references added, accepted to Phys. Rev.

    Cluster Headache Genomewide Association Study and Meta-Analysis Identifies Eight Loci and Implicates Smoking as Causal Risk Factor

    Get PDF
    Objective: The objective of this study was to aggregate data for the first genomewide association study meta-analysis of cluster headache, to identify genetic risk variants, and gain biological insights. Methods: A total of 4,777 cases (3,348 men and 1,429 women) with clinically diagnosed cluster headache were recruited from 10 European and 1 East Asian cohorts. We first performed an inverse-variance genomewide association meta-analysis of 4,043 cases and 21,729 controls of European ancestry. In a secondary trans-ancestry meta-analysis, we included 734 cases and 9,846 controls of East Asian ancestry. Candidate causal genes were prioritized by 5 complementary methods: expression quantitative trait loci, transcriptome-wide association, fine-mapping of causal gene sets, genetically driven DNA methylation, and effects on protein structure. Gene set and tissue enrichment analyses, genetic correlation, genetic risk score analysis, and Mendelian randomization were part of the downstream analyses. Results: The estimated single nucleotide polymorphism (SNP)-based heritability of cluster headache was 14.5%. We identified 9 independent signals in 7 genomewide significant loci in the primary meta-analysis, and one additional locus in the trans-ethnic meta-analysis. Five of the loci were previously known. The 20 genes prioritized as potentially causal for cluster headache showed enrichment to artery and brain tissue. Cluster headache was genetically correlated with cigarette smoking, risk-taking behavior, attention deficit hyperactivity disorder (ADHD), depression, and musculoskeletal pain. Mendelian randomization analysis indicated a causal effect of cigarette smoking intensity on cluster headache. Three of the identified loci were shared with migraine. Interpretation: This first genomewide association study meta-analysis gives clues to the biological basis of cluster headache and indicates that smoking is a causal risk factor. ANN NEUROL 2023

    Common Variant Burden Contributes to the Familial Aggregation of Migraine in 1,589 Families

    Get PDF
    © 2018 Elsevier Inc. Complex traits, including migraine, often aggregate in families, but the underlying genetic architecture behind this is not well understood. The aggregation could be explained by rare, penetrant variants that segregate according to Mendelian inheritance or by the sufficient polygenic accumulation of common variants, each with an individually small effect, or a combination of the two hypotheses. In 8,319 individuals across 1,589 migraine families, we calculated migraine polygenic risk scores (PRS) and found a significantly higher common variant burden in familial cases (n = 5,317, OR = 1.76, 95% CI = 1.71–1.81, p = 1.7 × 10−109) compared to population cases from the FINRISK cohort (n = 1,101, OR = 1.32, 95% CI = 1.25–1.38, p = 7.2 × 10−17). The PRS explained 1.6% of the phenotypic variance in the population cases and 3.5% in the familial cases (including 2.9% for migraine without aura, 5.5% for migraine with typical aura, and 8.2% for hemiplegic migraine). The results demonstrate a significant contribution of common polygenic variation to the familial aggregation of migraine. Gormley et al. use polygenic risk scores to show that common variation, captured by genome-wide association studies, in combination contributes to the aggregation of migraine in families. The results may have similar implications for other complex traits in general
    corecore