13 research outputs found

    Short ORF-Dependent Ribosome Shunting Operates in an RNA Picorna-Like Virus and a DNA Pararetrovirus that Cause Rice Tungro Disease

    Get PDF
    Rice tungro disease is caused by synergistic interaction of an RNA picorna-like virus Rice tungro spherical virus (RTSV) and a DNA pararetrovirus Rice tungro bacilliform virus (RTBV). It is spread by insects owing to an RTSV-encoded transmission factor. RTBV has evolved a ribosome shunt mechanism to initiate translation of its pregenomic RNA having a long and highly structured leader. We found that a long leader of RTSV genomic RNA remarkably resembles the RTBV leader: both contain several short ORFs (sORFs) and potentially fold into a large stem-loop structure with the first sORF terminating in front of the stem basal helix. Using translation assays in rice protoplasts and wheat germ extracts, we show that, like in RTBV, both initiation and proper termination of the first sORF translation in front of the stem are required for shunt-mediated translation of a reporter ORF placed downstream of the RTSV leader. The base pairing that forms the basal helix is required for shunting, but its sequence can be varied. Shunt efficiency in RTSV is lower than in RTBV. But in addition to shunting the RTSV leader sequence allows relatively efficient linear ribosome migration, which also contributes to translation initiation downstream of the leader. We conclude that RTSV and RTBV have developed a similar, sORF-dependent shunt mechanism possibly to adapt to the host translation system and/or coordinate their life cycles. Given that sORF-dependent shunting also operates in a pararetrovirus Cauliflower mosaic virus and likely in other pararetroviruses that possess a conserved shunt configuration in their leaders it is tempting to propose that RTSV may have acquired shunt cis-elements from RTBV during their co-existence

    Identification of Host Genes Involved in Geminivirus Infection Using a Reverse Genetics Approach

    Get PDF
    Geminiviruses, like all viruses, rely on the host cell machinery to establish a successful infection, but the identity and function of these required host proteins remain largely unknown. Tomato yellow leaf curl Sardinia virus (TYLCSV), a monopartite geminivirus, is one of the causal agents of the devastating Tomato yellow leaf curl disease (TYLCD). The transgenic 2IRGFP N. benthamiana plants, used in combination with Virus Induced Gene Silencing (VIGS), entail an important potential as a tool in reverse genetics studies to identify host factors involved in TYLCSV infection. Using these transgenic plants, we have made an accurate description of the evolution of TYLCSV replication in the host in both space and time. Moreover, we have determined that TYLCSV and Tobacco rattle virus (TRV) do not dramatically influence each other when co-infected in N. benthamiana, what makes the use of TRV-induced gene silencing in combination with TYLCSV for reverse genetic studies feasible. Finally, we have tested the effect of silencing candidate host genes on TYLCSV infection, identifying eighteen genes potentially involved in this process, fifteen of which had never been implicated in geminiviral infections before. Seven of the analyzed genes have a potential anti-viral effect, whereas the expression of the other eleven is required for a full infection. Interestingly, almost half of the genes altering TYLCSV infection play a role in postranslational modifications. Therefore, our results provide new insights into the molecular mechanisms underlying geminivirus infections, and at the same time reveal the 2IRGFP/VIGS system as a powerful tool for functional reverse genetics studies

    Coat proteins of Rice tungro bacilliform virus and Mungbean yellow mosaic virus contain multiple nuclear-localization signals and interact with importin α

    No full text
    Transport of the viral genome into the nucleus is an obligatory step in the replication cycle of plant pararetro- and geminiviruses. In both these virus types, the multifunctional coat protein (CP) is thought to be involved in this process. Here, a green fluorescent protein tagging approach was used to demonstrate nuclear import of the CPs of Rice tungro bacilliform virus (RTBV) and Mungbean yellow mosaic virus-Vigna (MYMV) in Nicotiana plumbaginifolia protoplasts. In both cases, at least two nuclear localization signals (NLSs) were identified and characterized. The NLSs of RTBV CP are located within both N- and C-terminal regions (residues 479KRPK/497KRK and 744KRK/758RRK), and those of MYMV CP within the N-terminal part (residues 3KR and 41KRRR). The MYMV and RTBV CP NLSs resemble classic mono- and bipartite NLSs, respectively. However, the N-terminal MYMV CP NLS and both RTBV CP NLSs show peculiarities in the number and position of basic residues. In vitro pull-down assays revealed interaction of RTBV and MYMV CPs with the nuclear import factor importin α, suggesting that both CPs are imported into the nucleus via an importin α-dependent pathway. The possibility that this pathway could serve for docking of virions to the nucleus is discussed

    Cross-species functionality of pararetroviral elements driving ribosome shunting

    Get PDF
    Cauliflower mosaic virus (CaMV) and Rice tungro bacilliform virus (RTBV) belong to distinct genera of pararetroviruses infecting dicot and monocot plants, respectively. In both viruses, polycistronic translation of pregenomic (pg) RNA is initiated by shunting ribosomes that bypass a large region of the pgRNA leader with several short (s)ORFs and a stable stem-loop structure. The shunt requires translation of a 5'-proximal sORF terminating near the stem. In CaMV, mutations knocking out this sORF nearly abolish shunting and virus viability.; Here we show that two distant regions of the CaMV leader that form a minimal shunt configuration comprising the sORF, a bottom part of the stem, and a shunt landing sequence can be replaced by heterologous sequences that form a structurally similar configuration in RTBV without any dramatic effect on shunt-mediated translation and CaMV infectivity. The CaMV-RTBV chimeric leader sequence was largely stable over five viral passages in turnip plants: a few alterations that did eventually occur in the virus progenies are indicative of fine tuning of the chimeric sequence during adaptation to a new host.; Our findings demonstrate cross-species functionality of pararetroviral cis-elements driving ribosome shunting and evolutionary conservation of the shunt mechanism. We are grateful to Matthias Müller and Sandra Pauli for technical assistance. This work was initiated at Friedrich Miescher Institute (Basel, Switzerland). We thank Prof. Thomas Boller for hosting the group at the Institute of Botany

    Mechanismen der Translationskontrolle in Eukaryonten

    No full text
    corecore