6,394 research outputs found

    Group classification of (1+1)-Dimensional Schr\"odinger Equations with Potentials and Power Nonlinearities

    Full text link
    We perform the complete group classification in the class of nonlinear Schr\"odinger equations of the form iψt+ψxx+ψγψ+V(t,x)ψ=0i\psi_t+\psi_{xx}+|\psi|^\gamma\psi+V(t,x)\psi=0 where VV is an arbitrary complex-valued potential depending on tt and x,x, γ\gamma is a real non-zero constant. We construct all the possible inequivalent potentials for which these equations have non-trivial Lie symmetries using a combination of algebraic and compatibility methods. The proposed approach can be applied to solving group classification problems for a number of important classes of differential equations arising in mathematical physics.Comment: 10 page

    Dense Quark Matter Conductivity in Ultra-Intense Magnetic Field

    Full text link
    Heavy-ion collisions generate a huge magnetic field of the order of 1018G10^{18} G for the duration of about 0.2 fm/c. This time may become an order of magnitude longer if the electrical conductivity of quark matter is large. We calculate the conductivity in the regime of high density and show that contrary to naive expectations it only weakly depends on the MF.Comment: 3 pages, 0 figure

    Evaluating elbow osteoarthritis within the prehistoric Tiwanaku state using generalized estimating equations (GEE).

    Get PDF
    OBJECTIVES:Studies of osteoarthritis (OA) in human skeletal remains can come with scalar problems. If OA measurement is noted as present or absent in one joint, like the elbow, results may not identify specific articular pathology data and the sample size may be insufficient to address research questions. If calculated on a per data point basis (i.e., each articular surface within a joint), results may prove too data heavy to comprehensively understand arthritic changes, or one individual with multiple positive scores may skew results and violate the data independence required for statistical tests. The objective of this article is to show that the statistical methodology Generalized Estimating Equations (GEE) can solve scalar issues in bioarchaeological studies. MATERIALS AND METHODS:Using GEE, a population-averaged statistical model, 1,195 adults from the core and one colony of the prehistoric Tiwanaku state (AD 500-1,100) were evaluated bilaterally for OA on the seven articular surfaces of the elbow joint. RESULTS:GEE linked the articular surfaces within each individual specimen, permitting the largest possible unbiased dataset, and showed significant differences between core and colony Tiwanaku peoples in the overall elbow joint, while also pinpointing specific articular surfaces with OA. Data groupings by sex and age at death also demonstrated significant variation. A pattern of elbow rotation noted for core Tiwanaku people may indicate a specific pattern of movement. DISCUSSION:GEE is effective and should be encouraged in bioarchaeological studies as a way to address scalar issues and to retain all pathology information

    New results on group classification of nonlinear diffusion-convection equations

    Full text link
    Using a new method and additional (conditional and partial) equivalence transformations, we performed group classification in a class of variable coefficient (1+1)(1+1)-dimensional nonlinear diffusion-convection equations of the general form f(x)ut=(D(u)ux)x+K(u)ux.f(x)u_t=(D(u)u_x)_x+K(u)u_x. We obtain new interesting cases of such equations with the density ff localized in space, which have large invariance algebra. Exact solutions of these equations are constructed. We also consider the problem of investigation of the possible local trasformations for an arbitrary pair of equations from the class under consideration, i.e. of describing all the possible partial equivalence transformations in this class.Comment: LaTeX2e, 19 page

    Dynamics of Large-Scale Plastic Deformation and the Necking Instability in Amorphous Solids

    Full text link
    We use the shear transformation zone (STZ) theory of dynamic plasticity to study the necking instability in a two-dimensional strip of amorphous solid. Our Eulerian description of large-scale deformation allows us to follow the instability far into the nonlinear regime. We find a strong rate dependence; the higher the applied strain rate, the further the strip extends before the onset of instability. The material hardens outside the necking region, but the description of plastic flow within the neck is distinctly different from that of conventional time-independent theories of plasticity.Comment: 4 pages, 3 figures (eps), revtex4, added references, changed and added content, resubmitted to PR

    Solutions for the General, Confluent and Biconfluent Heun equations and their connection with Abel equations

    Full text link
    In a recent paper, the canonical forms of a new multi-parameter class of Abel differential equations, so-called AIR, all of whose members can be mapped into Riccati equations, were shown to be related to the differential equations for the hypergeometric 2F1, 1F1 and 0F1 functions. In this paper, a connection between the AIR canonical forms and the Heun General (GHE), Confluent (CHE) and Biconfluent (BHE) equations is presented. This connection fixes the value of one of the Heun parameters, expresses another one in terms of those remaining, and provides closed form solutions in terms of pFq functions for the resulting GHE, CHE and BHE, respectively depending on four, three and two irreducible parameters. This connection also turns evident what is the relation between the Heun parameters such that the solutions admit Liouvillian form, and suggests a mechanism for relating linear equations with N and N-1 singularities through the canonical forms of a non-linear equation of one order less.Comment: Original version submitted to Journal of Physics A: 16 pages, related to math.GM/0002059 and math-ph/0402040. Revised version according to referee's comments: 23 pages. Sign corrected (June/17) in formula (79). Second revised version (July/25): 25 pages. See also http://lie.uwaterloo.ca/odetools.ht

    Enhanced Group Analysis and Exact Solutions of Variable Coefficient Semilinear Diffusion Equations with a Power Source

    Full text link
    A new approach to group classification problems and more general investigations on transformational properties of classes of differential equations is proposed. It is based on mappings between classes of differential equations, generated by families of point transformations. A class of variable coefficient (1+1)-dimensional semilinear reaction-diffusion equations of the general form f(x)ut=(g(x)ux)x+h(x)umf(x)u_t=(g(x)u_x)_x+h(x)u^m (m0,1m\ne0,1) is studied from the symmetry point of view in the framework of the approach proposed. The singular subclass of the equations with m=2m=2 is singled out. The group classifications of the entire class, the singular subclass and their images are performed with respect to both the corresponding (generalized extended) equivalence groups and all point transformations. The set of admissible transformations of the imaged class is exhaustively described in the general case m2m\ne2. The procedure of classification of nonclassical symmetries, which involves mappings between classes of differential equations, is discussed. Wide families of new exact solutions are also constructed for equations from the classes under consideration by the classical method of Lie reductions and by generation of new solutions from known ones for other equations with point transformations of different kinds (such as additional equivalence transformations and mappings between classes of equations).Comment: 40 pages, this is version published in Acta Applicanda Mathematica

    Hyperspherical Harmonics, Separation of Variables and the Bethe Ansatz

    Get PDF
    The relation between solutions to Helmholtz's equation on the sphere Sn1S^{n-1} and the [{\gr sl}(2)]^n Gaudin spin chain is clarified. The joint eigenfuctions of the Laplacian and a complete set of commuting second order operators suggested by the RR--matrix approach to integrable systems, based on the loop algebra \wt{sl}(2)_R, are found in terms of homogeneous polynomials in the ambient space. The relation of this method of determining a basis of harmonic functions on Sn1S^{n-1} to the Bethe ansatz approach to integrable systems is explained.Comment: 14 pgs, Plain Tex, preprint CRM--2174 (May, 1994

    Group Analysis of Variable Coefficient Diffusion-Convection Equations. I. Enhanced Group Classification

    Full text link
    We discuss the classical statement of group classification problem and some its extensions in the general case. After that, we carry out the complete extended group classification for a class of (1+1)-dimensional nonlinear diffusion--convection equations with coefficients depending on the space variable. At first, we construct the usual equivalence group and the extended one including transformations which are nonlocal with respect to arbitrary elements. The extended equivalence group has interesting structure since it contains a non-trivial subgroup of non-local gauge equivalence transformations. The complete group classification of the class under consideration is carried out with respect to the extended equivalence group and with respect to the set of all point transformations. Usage of extended equivalence and correct choice of gauges of arbitrary elements play the major role for simple and clear formulation of the final results. The set of admissible transformations of this class is preliminary investigated.Comment: 25 page

    Heterotic Line Bundle Standard Models

    Get PDF
    In a previous publication, arXiv:1106.4804, we have found 200 models from heterotic Calabi-Yau compactifications with line bundles, which lead to standard models after taking appropriate quotients by a discrete symmetry and introducing Wilson lines. In this paper, we construct the resulting standard models explicitly, compute their spectrum including Higgs multiplets, and analyze some of their basic properties. After removing redundancies we find about 400 downstairs models, each with the precise matter spectrum of the supersymmetric standard model, with one, two or three pairs of Higgs doublets and no exotics of any kind. In addition to the standard model gauge group, up to four Green-Schwarz anomalous U(1) symmetries are present in these models, which constrain the allowed operators in the four-dimensional effective supergravity. The vector bosons associated to these anomalous U(1) symmetries are massive. We explicitly compute the spectrum of allowed operators for each model and present the results, together with the defining data of the models, in a database of standard models accessible at http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html. Based on these results we analyze elementary phenomenological properties. For example, for about 200 models all dimension four and five proton decay violating operators are forbidden by the additional U(1) symmetries.Comment: 55 pages, Latex, 3 pdf figure
    corecore