52 research outputs found

    Rain: Relaxations in the sky

    Full text link
    We demonstrate how, from the point of view of energy flow through an open system, rain is analogous to many other relaxational processes in Nature such as earthquakes. By identifying rain events as the basic entities of the phenomenon, we show that the number density of rain events per year is inversely proportional to the released water column raised to the power 1.4. This is the rain-equivalent of the Gutenberg-Richter law for earthquakes. The event durations and the waiting times between events are also characterised by scaling regions, where no typical time scale exists. The Hurst exponent of the rain intensity signal H=0.76>0.5H = 0.76 > 0.5. It is valid in the temporal range from minutes up to the full duration of the signal of half a year. All of our findings are consistent with the concept of self-organised criticality, which refers to the tendency of slowly driven non-equilibrium systems towards a state of scale free behaviour.Comment: 9 pages, 8 figures, submitted to PR

    Avalanche Merging and Continuous Flow in a Sandpile Model

    Full text link
    A dynamical transition separating intermittent and continuous flow is observed in a sandpile model, with scaling functions relating the transport behaviors between both regimes. The width of the active zone diverges with system size in the avalanche regime but becomes very narrow for continuous flow. The change of the mean slope, Delta z, on increasing the driving rate, r, obeys Delta z ~ r^{1/theta}. It has nontrivial scaling behavior in the continuous flow phase with an exponent theta given, paradoxically, only in terms of exponents characterizing the avalanches theta = (1+z-D)/(3-D).Comment: Explanations added; relation to other model

    Fluctuation of the Top Location and Avalanches in the Formation Process of a Sandpile

    Full text link
    We investigate the formation processes of a sandpile using numerical simulation. We find a new relation between the fluctuation of the motion of the top and the surface state of a sandpile. The top moves frequently as particles are fed one by one every time interval T. The time series of the top location has the power spectrum which obeys a power law, S(f)~f^{\alpha}, and its exponent \alpha depends on T and the system size w. The surface state is characterized by two time scales; the lifetime of an avalanche, T_{a}, and the time required to cause an avalanche, T_{s}. The surface state is fluid-like when T_{a}~T_{s}, and it is solid-like when T_{a}<<T_{s}. Our numerical results show that \alpha is a function of T_{s}/T_{a}.Comment: 15 pages, 13 figure

    Slowly driven sandpile formation with granular mixtures

    Get PDF
    We introduce a one-dimensional sandpile model with NN different particle types and an infinitesimal driving rate. The parameters for the model are the N^2 critical slopes for one type of particle on top of another. The model is trivial when N=1, but for N=2 we observe four broad classes of sandpile structure in different regions of the parameter space. We describe and explain the behaviour of each of these classes, giving quantitative analysis wherever possible. The behaviour of sandpiles with N>2 essentially consists of combinations of these four classes. We investigate the model's robustness and highlight the key areas that any experiment designed to reproduce these results should focus on

    Coiling Instability of Multilamellar Membrane Tubes with Anchored Polymers

    Full text link
    We study experimentally a coiling instability of cylindrical multilamellar stacks of phospholipid membranes, induced by polymers with hydrophobic anchors grafted along their hydrophilic backbone. Our system is unique in that coils form in the absence of both twist and adhesion. We interpret our experimental results in terms of a model in which local membrane curvature and polymer concentration are coupled. The model predicts the occurrence of maximally tight coils above a threshold polymer occupancy. A proper comparison between the model and experiment involved imaging of projections from simulated coiled tubes with maximal curvature and complicated torsions.Comment: 11 pages + 7 GIF figures + 10 JPEG figure

    Internal avalanches in a pile of superconducting vortices

    Full text link
    Using an array of miniature Hall probes, we monitored the spatiotemporal variation of the internal magnetic induction in a superconducting niobium sample during a slow sweep of external magnetic field. We found that a sizable fraction of the increase in the local vortex population occurs in abrupt jumps. The size distribution of these avalanches presents a power-law collapse on a limited range. In contrast, at low temperatures and low fields, huge avalanches with a typical size occur and the system does not display a well-defined macroscopic critical current.Comment: 5 pages including 5 figure

    Viscous stabilization of 2D drainage displacements with trapping

    Full text link
    We investigate the stabilization mechanisms due to viscous forces in the invasion front during drainage displacement in two-dimensional porous media using a network simulator. We find that in horizontal displacement the capillary pressure difference between two different points along the front varies almost linearly as function of height separation in the direction of the displacement. The numerical result supports arguments taking into account the loopless displacement pattern where nonwetting fluid flow in separate strands (paths). As a consequence, we show that existing theories developed for viscous stabilization, are not compatible with drainage when loopless strands dominate the displacement process.Comment: The manuscript has been substantially revised. Accepted in Phys. Rev. Let

    Avalanche dynamics, surface roughening and self-organized criticality - experiments on a 3 dimensional pile of rice

    Full text link
    We present a two-dimensional system which exhibits features of self-organized criticality. The avalanches which occur on the surface of a pile of rice are found to exhibit finite size scaling in their probability distribution. The critical exponents are τ\tau = 1.21(2) for the avalanche size distribution and DD = 1.99(2) for the cut-off size. Furthermore the geometry of the avalanches is studied leading to a fractal dimension of the active sites of dBd_B = 1.58(2). Using a set of scaling relations, we can calculate the roughness exponent α=D−dB\alpha = D - d_B = 0.41(3) and the dynamic exponent z=D(2−τ)z = D(2 - \tau) = 1.56(8). This result is compared with that obtained from a power spectrum analysis of the surface roughness, which yields α\alpha = 0.42(3) and zz = 1.5(1) in excellent agreement with those obtained from the scaling relations.Comment: 7 pages, 8 figures, accepted for publication in PR

    Simulating temporal evolution of pressure in two-phase flow in porous media

    Get PDF
    We have simulated the temporal evolution of pressure due to capillary and viscous forces in two-phase drainage in porous media. We analyze our result in light of macroscopic flow equations for two-phase flow. We also investigate the effect of the trapped clusters on the pressure evolution and on the effective permeability of the system. We find that the capillary forces play an important role during the displacements for both fast and slow injection rates and both when the invading fluid is more or less viscous than the defending fluid. The simulations are based on a network simulator modeling two-phase drainage displacements on a two-dimensional lattice of tubes.Comment: 12 pages, LaTeX, 14 figures, Postscrip

    Fine Structure of Avalanches in the Abelian Sandpile Model

    Full text link
    We study the two-dimensional Abelian Sandpile Model on a square lattice of linear size L. We introduce the notion of avalanche's fine structure and compare the behavior of avalanches and waves of toppling. We show that according to the degree of complexity in the fine structure of avalanches, which is a direct consequence of the intricate superposition of the boundaries of successive waves, avalanches fall into two different categories. We propose scaling ans\"{a}tz for these avalanche types and verify them numerically. We find that while the first type of avalanches has a simple scaling behavior, the second (complex) type is characterized by an avalanche-size dependent scaling exponent. This provides a framework within which one can understand the failure of a consistent scaling behavior in this model.Comment: 10 page
    • 

    corecore