877 research outputs found
The horizon and its charges in the first order gravity
In this work the algebra of charges of diffeomorphisms at the horizon of
generic black holes is analyzed within first order gravity. This algebra
reproduces the algebra of diffeomorphisms at the horizon, (Diff(S^1)), without
central extension
DEVELOPMENT OF A TESTING FACILITY FOR EXPERIMENTAL INVESTIGATION OF MEMS DYNAMICS
Abstract Dynamic characteristics of overhung and/or moving components play a pivotal role in determining the overall performance and reliability of microsystems (MEMS). In addition to the structural dynamics of the components, the response is very sensitive to multi-physics phenomena such as electrostatics, gas damping, and friction. Therefore, the ability to experimentally analyze linear and nonlinear dynamics of microsystems under varying environmental conditions is very important. This paper describes a facility for experimental investigation and validation of linear and nonlinear dynamic response of microsystems under varying environmental conditions. A detailed account of the facility components and software developed for excitation and data collection is given. Experimental results and discussion for various MEMS structures are included to illustrate the effectiveness of the experimental facility
QED on Curved Background and on Manifolds with Boundaries: Unitarity versus Covariance
Some recent results show that the covariant path integral and the integral
over physical degrees of freedom give contradicting results on curved
background and on manifolds with boundaries. This looks like a conflict between
unitarity and covariance. We argue that this effect is due to the use of
non-covariant measure on the space of physical degrees of freedom. Starting
with the reduced phase space path integral and using covariant measure
throughout computations we recover standard path integral in the Lorentz gauge
and the Moss and Poletti BRST-invariant boundary conditions. We also
demonstrate by direct calculations that in the approach based on Gaussian path
integral on the space of physical degrees of freedom some basic symmetries are
broken.Comment: 29 pages, LaTEX, no figure
Economics of some soil conservation practices
In applying conservation and fertility improvement plans, farmers have a choice between alternative combinations of land use, fertilizer applications and erosion control practices. Within limits, they may choose between different rotations and different fertilizer applications combined with different erosion control practices and still farm the land in accordance with the soil capabilities.
While land use in accordance with soil capabilities and appropriate fertilization is basic to soil conservation, these measures need to be supplemented by supporting conservation practices such as contouring, sod waterways, mulching, drainage, flumes, etc., if soil is to be conserved and improved most efficiently.
Successful conservation farming (that system which will increase total farm production, build up soil fertility, control erosion and maximize earnings) cannot be tailor-made to fit all farms but involves consideration of each individual\u27s situation. The farmer (and those working with him) must analyze his problem to determine his costs and returns for the farm as a whole under alternative combinations of crops, fertilization and supporting conservation measures to determine which system will best fit his capital position and abilities and still do the conservation job
Soil microbial communities in diverse agroecosystems exposed to the herbicide glyphosate
© 2020 American Society for Microbiology. Despite glyphosate\u27s wide use for weed control in agriculture, questions remain about the herbicide\u27s effect on soil microbial communities. The existing scientific literature contains conflicting results, from no observable effect of glyphosate to the enrichment of agricultural pathogens such as Fusarium spp. We conducted a comprehensive field-based study to compare the microbial communities on the roots of plants that received a foliar application of glyphosate to adjacent plants that did not. The 2-year study was conducted in Beltsville, MD, and Stoneville, MS, with corn and soybean crops grown in a variety of organic and conventional farming systems. By sequencing environmental metabarcode amplicons, the prokaryotic and fungal communities were described, along with chemical and physical properties of the soil. Sections of corn and soybean roots were plated to screen for the presence of plant pathogens. Geography, farming system, and season were significant factors determining the composition of fungal and prokaryotic communities. Plots treated with glyphosate did not differ from untreated plots in overall microbial community composition after controlling for other factors. We did not detect an effect of glyphosate treatment on the relative abundance of organisms such as Fusarium spp
Model Calculations for the Two-Fragment Electro-Disintegration of He
Differential cross sections for the electro-disintegration process are calculated, using a model in which
the final state interaction is included by means of a nucleon-nucleus (3+1)
potential constructed via Marchenko inversion. The required bound-state wave
functions are calculated within the integrodifferential equation approach
(IDEA). In our model the important condition that the initial bound state and
the final scattering state are orthogonal is fulfilled. The sensitivity of the
cross section to the input interaction in certain kinematical regions
is investigated. The approach adopted could be useful in reactions involving
few cluster systems where effective interactions are not well known and exact
methods are presently unavailable. Although, our Plane-Wave Impulse
Approximation results exhibit, similarly to other calculations, a dip in the
five-fold differential cross-section around a missing momentum of , it is argued that this is an artifact of the omission of re-scattering
four-nucleon processes.Comment: 16 pages, 6 figures, accepted for publication by Phys.Rev.
Feynman Graphs and Generalized Eikonal Approach to High Energy Knock-Out Processes
The cross section of hard semi-exclusive reactions for fixed
missing energy and momentum is calculated within the eikonal approximation.
Relativistic dynamics and kinematics of high energy processes are unambiguously
accounted for by using the analysis of appropriate Feynman diagrams. A
significant dependence of the final state interactions on the missing energy is
found, which is important for interpretation of forthcoming color transparency
experiments. A new, more stringent kinematic restriction on the region where
the contribution of short-range nucleon correlations is enhanced in
semi-exclusive knock-out processes is derived. It is also demonstrated that the
use of light-cone variables leads to a considerable simplification of the
description of high-energy knock-out reactions.Comment: 24 pages, LaTex, two Latex and two ps figures, uses FEYNMAN.tex and
psfig.sty. Revisied version to appear in Phys. Rev.
Sur la p-dimension des corps
Let A be an excellent integral henselian local noetherian ring, k its residue
field of characteristic p>0 and K its fraction field. Using an algebraization
technique introduced by the first named author, and the one-dimension case
already proved by Kazuya KATO, we prove the following formula: cd_p(K) = dim(A)
+ p-rank(k), if k is separably closed and K of characteristic zero. A similar
statement is valid without those assumptions on k and K
Bottom Production
We review the prospects for bottom production physics at the LHC.Comment: 74 pages, Latex, 71 figures, to appear in the Report of the ``1999
CERN Workshop on SM physics (and more) at the LHC'', P. Nason, G. Ridolfi, O.
Schneider G.F. Tartarelli, P. Vikas (conveners
- …