199 research outputs found

    Towards understanding the cutting and fracture mechanism in ceramic matrix composites

    Get PDF
    Ceramic Matrix Composites (CMCs) are increasingly used for the manufacture of high-value parts for several industries such as the aerospace, nuclear and automotive. Nevertheless, their heterogenic, anisotropic and brittle nature make difficult to characterise the machining process and therefore, an in-depth understanding of the cutting mechanics is needed. In this regard, this paper aims to understand the different behaviours of CMCs while employing orthogonal cutting. The first part of this article proposes a novel theoretical approach to explain the different types of cutting behaviours (fracture and shear cutting) based on the inelastic and orthotropic properties of the CMC's by using a high imaging system and measuring the cutting forces. The second part aims to understand the cutting and fracture mechanism by developing for the first time a specific analytical model for each of the three main orthotropic orientations, defined by the three main relative fibre orientations respect to the feed direction, which are found in cutting of CMCs. This is approached by the calculation of the specific cutting energy needed to fracture the CMC's during cutting (energy release rate, Gc) using fracture mechanics and cutting theories. This analytical model has been successfully validated for a Carbon/Carbon composite with the experimental data obtained for the brittle cutting and by introducing the concept of a rising R-curve in cutting models. Moreover, comparing the results obtained for the energy release rate for the brittle and semi-ductile mode, it is observed that the material experiences an important change in the energy release rate according to the brittle-to-semi-ductile transition occurring while reducing the depth of cut. Finally, a novel monitoring method based on the vibrations of the sample has been found successful to understand the type of crack formation appearing while cutting CMCs

    Probabilistic modelling of tool unbalance during cutting of hard-heterogeneous materials: a case study in Ceramic Matrix Composites (CMCs)

    Get PDF
    Compared to other materials, CMCs display a unique high hardness and heterogeneous nature which are critically reflected during the drilling process where asymmetrical high forces are suffered by the tool, resulting in an unbalance of the drill bit. Hence, this study proposes a mechanistic approach where the hard nature resulting in high radial forces is analytically studied and coupled with a probabilistic model where the heterogeneous nature of CMCs is taken into consideration. This theoretical study results in an in-depth understanding of the loading unbalance occurring on different tool sizes during drilling of CMCs which can lead to a premature tool breakage. The nature of this unique force that is assumed in the theoretical approach to influence the cutting of hard-heterogeneous materials is experimentally validated by drilling a homogeneous and a heterogeneous hard ceramics, i.e. a monolithic SiC and a SiC/SiC CMC. Moreover, the model developed together the with drilling experiments with different tool diameters result in an understanding of why small tool diameters suffer a premature tool breakage when drilling difficult-to-machine CMCs

    Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering

    Full text link
    Ecosystem-bedrock interactions power the biogeochemical cycles of Earth's shallow crust, supporting life, stimulating substrate transformation, and spurring evolutionary innovation. While oxidative processes have dominated half of terrestrial history, the relative contribution of the biosphere and its chemical fingerprints on Earth's developing regolith are still poorly constrained. Here, we report results from a two-year incipient weathering experiment. We found that the mass release and compartmentalization of major elements during weathering of granite, rhyolite, schist and basalt was rock-specific and regulated by ecosystem components. A tight interplay between physiological needs of different biota, mineral dissolution rates, and substrate nutrient availability resulted in intricate elemental distribution patterns. Biota accelerated CO2 mineralization over abiotic controls as ecosystem complexity increased, and significantly modified stoichiometry of mobilized elements. Microbial and fungal components inhibited element leaching (23.4% and 7%), while plants increased leaching and biomass retention by 63.4%. All biota left comparable biosignatures in the dissolved weathering products. Nevertheless, the magnitude and allocation of weathered fractions under abiotic and biotic treatments provide quantitative evidence for the role of major biosphere components in the evolution of upper continental crust, presenting critical information for large-scale biogeochemical models and for the search for stable in situ biosignatures beyond Earth.Comment: 41 pages (MS, SI and Data), 16 figures (MS and SI), 6 tables (SI and Data). Journal article manuscrip

    A Note on Flux Induced Superpotentials in String Theory

    Get PDF
    Non-vanishing fluxes in M-theory and string theory compactifications induce a superpotential in the lower dimensional theory. Gukov has conjectured the explicit form of this superpotential. We check this conjecture for the heterotic string compactified on a Calabi-Yau three-fold as well as for warped M-theory compactifications on Spin(7) holonomy manifolds, by performing a Kaluza-Klein reduction.Comment: 19 pages, no figure

    Integration of DFDs into a UML - based model-driven engineering approach

    Get PDF
    The main aim of this article is to discuss how the functional and the object-oriented views can be inter-played to represent the various modeling perspectives of embedded systems.We discuss whether the object-oriented modeling paradigm, the predominant one to develop software at the present time, is also adequate for modeling embedded software and how it can be used with the functional paradigm.More specifically, we present how the main modeling tool of the traditional structured methods, data flow diagrams, can be integrated in an object-oriented development strategy based on the unified modeling language. The rationale behind the approach is that both views are important for modeling purposes in embedded systems environments, and thus a combined and integrated model is not only useful, but also fundamental for developing complex systems. The approach was integrated in amodel-driven engineering process, where tool support for the models used was provided. In addition, model transformations have been specified and implemented to automate the process.We exemplify the approach with an IPv6 router case study.FEDER -Fundação para a Ciência e a Tecnologia(HH-02-383

    Tumor interactions with soluble factors and the nervous system

    Get PDF
    In the genomic era of cancer research, the development of metastases has been attributed to mutations in the tumor that enable the cells to migrate. However, gene analyses revealed that primary tumors and metastases were in some cases genetically identical and the question was raised whether metastasis formation might be an inherent feature of certain tumor cells. In contradiction to this view, the last decade of cancer research has brought to light, that tumor cell migration, similar to leukocyte and fibroblast migration, is a highly regulated process. The nervous system plays an important role in this regulation, at least in two respects: firstly, neurotransmitters are known to regulate the migratory activity of tumor cells, and secondly, nerve fibers are used as routes for perineural invasion. We also summarize here the current knowledge on the innervation of tumors. Such a process might establish a neuro-neoplastic synapse, with the close interaction of tumor cells and nerve cells supporting metastasis formation

    The global, regional, and national burden of stomach cancer in 195 countries, 1990-2017 : a systematic analysis for the Global Burden of Disease study 2017

    Get PDF
    Background: Stomach cancer is a major health problem in many countries. Understanding the current burden of stomach cancer and the differential trends across various locations is essential for formulating effective preventive strategies. We report on the incidence, mortality, and disability-adjusted life-years (DALYs) due to stomach cancer in 195 countries and territories from 21 regions between 1990 and 2017. Methods: Estimates from GBD 2017 were used to analyse the incidence, mortality, and DALYs due to stomach cancer at the global, regional, and national levels. The rates were standardised to the GBD world population and reported per 100 000 population as age-standardised incidence rates, age-standardised death rates, and age-standardised DALY rates. All estimates were generated with 95% uncertainty intervals (UIs). Findings: In 2017, more than 1·22 million (95% UI 1·19–1·25) incident cases of stomach cancer occurred worldwide, and nearly 865 000 people (848 000–885 000) died of stomach cancer, contributing to 19·1 million (18·7–19·6) DALYs. The highest age-standardised incidence rates in 2017 were seen in the high-income Asia Pacific (29·5, 28·2–31·0 per 100 000 population) and east Asia (28·6, 27·3–30·0 per 100 000 population) regions, with nearly half of the global incident cases occurring in China. Compared with 1990, in 2017 more than 356 000 more incident cases of stomach cancer were estimated, leading to nearly 96 000 more deaths. Despite the increase in absolute numbers, the worldwide age-standardised rates of stomach cancer (incidence, deaths, and DALYs) have declined since 1990. The drop in the disease burden was associated with improved Socio-demographic Index. Globally, 38·2% (21·1–57·8) of the age-standardised DALYs were attributable to high-sodium diet in both sexes combined, and 24·5% (20·0–28·9) of the age-standardised DALYs were attributable to smoking in males. Interpretation: Our findings provide insight into the changing burden of stomach cancer, which is useful in planning local strategies and monitoring their progress. To this end, specific local strategies should be tailored to each country's risk factor profile. Beyond the current decline in age-standardised incidence and death rates, a decrease in the absolute number of cases and deaths will be possible if the burden in east Asia, where currently almost half of the incident cases and deaths occur, is further reduced. Funding: Bill & Melinda Gates Foundation

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    • …
    corecore