838 research outputs found

    Rolling Closed String Tachyons and the Big Crunch

    Full text link
    We study the low-energy effective field equations that couple gravity, the dilaton, and the bulk closed string tachyon of bosonic closed string theory. We establish that whenever the tachyon induces the rolling process, the string metric remains fixed while the dilaton rolls to strong coupling. For negative definite potentials we show that this results in an Einstein metric that crunches the universe in finite time. This behavior is shown to be rather generic even if the potentials are not negative definite. The solutions are reminiscent of those in the collapse stage of a cyclic universe cosmology where scalar field potentials with negative energies play a central role.Comment: 13 pages, 2 figures, LaTeX. Replaced version: one reference adde

    The Kerr-Newman-Godel Black Hole

    Full text link
    By applying a set of Hassan-Sen transformations and string dualities to the Kerr-Godel solution of minimal D=5 supergravity we derive a four parameter family of five dimensional solutions in type II string theory. They describe rotating, charged black holes in a rotating background. For zero background rotation, the solution is D=5 Kerr-Newman; for zero charge it is Kerr-Godel. In a particular extremal limit the solution describes an asymptotically Godel BMPV black hole.Comment: 12 pages, LaTeX, no figures; v2: one reference added, very minor changes; to appear in CQ

    Vacuum Plane Waves in 4+1 D and Exact solutions to Einstein's Equations in 3+1 D

    Full text link
    In this paper we derive homogeneous vacuum plane-wave solutions to Einstein's field equations in 4+1 dimensions. The solutions come in five different types of which three generalise the vacuum plane-wave solutions in 3+1 dimensions to the 4+1 dimensional case. By doing a Kaluza-Klein reduction we obtain solutions to the Einstein-Maxwell equations in 3+1 dimensions. The solutions generalise the vacuum plane-wave spacetimes of Bianchi class B to the non-vacuum case and describe spatially homogeneous spacetimes containing an extremely tilted fluid. Also, using a similar reduction we obtain 3+1 dimensional solutions to the Einstein equations with a scalar field.Comment: 16 pages, no figure

    String Field Theory Vertices for Fermions of Integral Weight

    Full text link
    We construct Witten-type string field theory vertices for a fermionic first order system with conformal weights (0,1) in the operator formulation using delta-function overlap conditions as well as the Neumann function method. The identity, the reflector and the interaction vertex are treated in detail paying attention to the zero mode conditions and the U(1) charge anomaly. The Neumann coefficients for the interaction vertex are shown to be intimately connected with the coefficients for bosons allowing a simple proof that the reparametrization anomaly of the fermionic first order system cancels the contribution of two real bosons. This agrees with their contribution c=-2 to the central charge. The overlap equations for the interaction vertex are shown to hold. Our results have applications in N=2 string field theory, Berkovits' hybrid formalism for superstring field theory, the \eta\xi-system and the twisted bc-system used in bosonic vacuum string field theory.Comment: 1+28 pages, minor improvements, references adde

    Fundamental Strings in Open String Theory at the Tachyonic Vacuum

    Get PDF
    We show that the world-volume theory on a D-p-brane at the tachyonic vacuum has solitonic string solutions whose dynamics is governed by the Nambu-Goto action of a string moving in (25+1) dimensional space-time. This provides strong evidence for the conjecture that at this vacuum the full (25+1) dimensional Poincare invariance is restored. We also use this result to argue that the open string field theory at the tachyonic vacuum must contain closed string excitations.Comment: LaTeX file, 16 pages, references and clarification adde

    Essential Constants for Spatially Homogeneous Ricci-flat manifolds of dimension 4+1

    Full text link
    The present work considers (4+1)-dimensional spatially homogeneous vacuum cosmological models. Exact solutions -- some already existing in the literature, and others believed to be new -- are exhibited. Some of them are the most general for the corresponding Lie group with which each homogeneous slice is endowed, and some others are quite general. The characterization ``general'' is given based on the counting of the essential constants, the line-element of each model must contain; indeed, this is the basic contribution of the work. We give two different ways of calculating the number of essential constants for the simply transitive spatially homogeneous (4+1)-dimensional models. The first uses the initial value theorem; the second uses, through Peano's theorem, the so-called time-dependent automorphism inducing diffeomorphismsComment: 26 Pages, 2 Tables, latex2

    Multidimensional Cosmology: Spatially Homogeneous models of dimension 4+1

    Full text link
    In this paper we classify all 4+1 cosmological models where the spatial hypersurfaces are connected and simply connected homogeneous Riemannian manifolds. These models come in two categories, multiply transitive and simply transitive models. There are in all five different multiply transitive models which cannot be considered as a special case of a simply transitive model. The classification of simply transitive models, relies heavily upon the classification of the four dimensional (real) Lie algebras. For the orthogonal case, we derive all the equations of motion and give some examples of exact solutions. Also the problem of how these models can be compactified in context with the Kaluza-Klein mechanism, is addressed.Comment: 24 pages, no figures; Refs added, typos corrected. To appear in CQ
    corecore