280 research outputs found
Experimental investigation of enviroment--induced entanglement using an all--optical setup
We investigate the generation of entanglement between two non interacting
qubits coupled to a common reservoir. An experimental setup was conceived to
encode one qubit on the polarization of an optical beam and another qubit on
its transverse mode. The action of the reservoir is implemented as conditional
operations on these two qubits, controlled by the longitudinal path as an
ancillary degree of freedom. An entanglement witness and the two-qubit
concurrence are easily evaluated from direct intensity measurements showing an
excellent agreement with the theoretical prediction.Comment: 7 pagea, 5 figure
Experimental investigation of dynamical invariants in bipartite entanglement
The non-conservation of entanglement, when two or more particles interact,
sets it apart from other dynamical quantities like energy and momentum. It does
not allow the interpretation of the subtle dynamics of entanglement as a flow
of this quantity between the constituents of the system. Here we show that
adding a third party to a two-particle system may lead to a conservation law
that relates the quantities characterizing the bipartite entanglement between
each of the parties and the other two. We provide an experimental demonstration
of this idea using entangled photons, and generalize it to N-partite GHZ
states
Magnetic Impurity in a Metal with Correlated Conduction Electrons: An Infinite Dimensions Approach
We consider the Hubbard model with a magnetic Anderson impurity coupled to a
lattice site. In the case of infinite dimensions, one-particle correlations of
the impurity electron are described by the effective Hamiltonian of the
two-impurity system. One of the impurities interacts with a bath of free
electrons and represents the Hubbard lattice, and the other is coupled to the
first impurity by the bare hybridization interaction. A study of the effective
two-impurity Hamiltonian in the frame of the 1/N expansion and for the case of
a weak conduction-electron interaction (small U) reveals an enhancement of the
usual exponential Kondo scale. However, an intermediate interaction (U/D = 1 -
3), treated by the variational principle, leads to the loss of the exponential
scale. The Kondo temperature T_K of the effective two-impurity system is
calculated as a function of the hybridization parameter and it is shown that
T_K decreases with an increase of U. The non-Fermi-liquid character of the
Kondo effect in the intermediate regime at the half filling is discussed.Comment: 12 pages with 8 PS figures, RevTe
Fano effect of a strongly interacting quantum dot in contact with superconductor
The physics of a system consisting of an Aharonov Bohm (AB) interferometer
containing a single level interacting quantum dot (QD) on one of its arms, and
attached to normal (N) and superconducting (S) leads is studied and elucidated.
Here the focus is directed mainly on N-AB-S junctions but the theory is capable
of studying S-AB-S junctions as well. The interesting physics comes into play
under the conditions that both the Kondo effect in the QD and the the Fano
effect are equally important.It is found the conductance of the junction is
suppressed as the Fano effect becomes more dominant.Comment: 4 pages, Talk to be given at the NATO Conference MQO, Bled, Slovenia
7-10 September 200
Phase transition curves for mesoscopic superconducting samples
We compute the phase transition curves for mesoscopic superconductors.
Special emphasis is given to the limiting shape of the curve when the magnetic
flux is large. We derive an asymptotic formula for the ground state of the
Schr\"odinger equation in the presence of large applied flux. The expansion is
shown to be sensitive to the smoothness of the domain. The theoretical results
are compared to recent experiments.Comment: 8 pages, 1 figur
Detection statistics in the micromaser
We present a general method for the derivation of various statistical
quantities describing the detection of a beam of atoms emerging from a
micromaser. The user of non-normalized conditioned density operators and a
linear master equation for the dynamics between detection events is discussed
as are the counting statistics, sequence statistics, and waiting time
statistics. In particular, we derive expressions for the mean number of
successive detections of atoms in one of any two orthogonal states of the
two-level atom. We also derive expressions for the mean waiting times between
detections. We show that the mean waiting times between de- tections of atoms
in like states are equivalent to the mean waiting times calculated from the
uncorrelated steady state detection rates, though like atoms are indeed
correlated. The mean waiting times between detections of atoms in unlike states
exhibit correlations. We evaluate the expressions for various detector
efficiencies using numerical integration, reporting re- sults for the standard
micromaser arrangement in which the cavity is pumped by excited atoms and the
excitation levels of the emerging atoms are measured. In addition, the atomic
inversion and the Fano-Mandel function for the detection of de-excited atoms is
calculated for compari- son to the recent experimental results of Weidinger et
al. [1], which reports the first observation of trapping states.Comment: 26 pages, 11 figure
Kondo Effect in a Metal with Correlated Conduction Electrons: Diagrammatic Approach
We study the low-temperature behavior of a magnetic impurity which is weakly
coupled to correlated conduction electrons. To account for conduction electron
interactions a diagrammatic approach in the frame of the 1/N expansion is
developed. The method allows us to study various consequences of the conduction
electron correlations for the ground state and the low-energy excitations. We
analyse the characteristic energy scale in the limit of weak conduction
electron interactions. Results are reported for static properties (impurity
valence, charge susceptibility, magnetic susceptibility, and specific heat) in
the low-temperature limit.Comment: 16 pages, 9 figure
Conditional large Fock state preparation and field state reconstruction in Cavity QED
We propose a scheme for producing large Fock states in Cavity QED via the
implementation of a highly selective atom-field interaction. It is based on
Raman excitation of a three-level atom by a classical field and a quantized
field mode. Selectivity appears when one tunes to resonance a specific
transition inside a chosen atom-field subspace, while other transitions remain
dispersive, as a consequence of the field dependent electronic energy shifts.
We show that this scheme can be also employed for reconstructing, in a new and
efficient way, the Wigner function of the cavity field state.Comment: 4 Revtex pages with 3 postscript figures. Submitted for publicatio
Complete quantum teleportation with a Kerr nonlinearity
We present a scheme for the quantum teleportation of the polarization state
of a photon employing a cross-Kerr medium. The experimental feasibility of the
scheme is discussed and we show that, using the recently demonstrated ultraslow
light propagation in cold atomic media, our proposal can be realized with
presently available technology.Comment: 4 pages, revtex, 1 eps figur
Revival-collapse phenomenon in the fluctuations of quadrature field components of the multiphoton Jaynes-Cummings model
In this paper we consider a system consisting of a two-level atom, initially
prepared in a coherent superposition of upper and lower levels, interacting
with a radiation field prepared in generalized quantum states in the framework
of multiphoton Jaynes-Cummings model. For this system we show that there is a
class of states for which the fluctuation factors can exhibit revival-collapse
phenomenon (RCP) similar to that exhibited in the corresponding atomic
inversion. This is shown not only for normal fluctuations but also for
amplitude-squared fluctuations. Furthermore, apart from this class of states we
generally demonstrate that the fluctuation factors associated with three-photon
transition can provide RCP similar to that occurring in the atomic inversion of
the one-photon transition. These are novel results and their consequence is
that RCP occurred in the atomic inversion can be measured via a homodyne
detector. Furthermore, we discuss the influence of the atomic relative phases
on such phenomenon.Comment: 17 pages, 4 figure
- …
