280 research outputs found

    Experimental investigation of enviroment--induced entanglement using an all--optical setup

    Full text link
    We investigate the generation of entanglement between two non interacting qubits coupled to a common reservoir. An experimental setup was conceived to encode one qubit on the polarization of an optical beam and another qubit on its transverse mode. The action of the reservoir is implemented as conditional operations on these two qubits, controlled by the longitudinal path as an ancillary degree of freedom. An entanglement witness and the two-qubit concurrence are easily evaluated from direct intensity measurements showing an excellent agreement with the theoretical prediction.Comment: 7 pagea, 5 figure

    Experimental investigation of dynamical invariants in bipartite entanglement

    Full text link
    The non-conservation of entanglement, when two or more particles interact, sets it apart from other dynamical quantities like energy and momentum. It does not allow the interpretation of the subtle dynamics of entanglement as a flow of this quantity between the constituents of the system. Here we show that adding a third party to a two-particle system may lead to a conservation law that relates the quantities characterizing the bipartite entanglement between each of the parties and the other two. We provide an experimental demonstration of this idea using entangled photons, and generalize it to N-partite GHZ states

    Magnetic Impurity in a Metal with Correlated Conduction Electrons: An Infinite Dimensions Approach

    Full text link
    We consider the Hubbard model with a magnetic Anderson impurity coupled to a lattice site. In the case of infinite dimensions, one-particle correlations of the impurity electron are described by the effective Hamiltonian of the two-impurity system. One of the impurities interacts with a bath of free electrons and represents the Hubbard lattice, and the other is coupled to the first impurity by the bare hybridization interaction. A study of the effective two-impurity Hamiltonian in the frame of the 1/N expansion and for the case of a weak conduction-electron interaction (small U) reveals an enhancement of the usual exponential Kondo scale. However, an intermediate interaction (U/D = 1 - 3), treated by the variational principle, leads to the loss of the exponential scale. The Kondo temperature T_K of the effective two-impurity system is calculated as a function of the hybridization parameter and it is shown that T_K decreases with an increase of U. The non-Fermi-liquid character of the Kondo effect in the intermediate regime at the half filling is discussed.Comment: 12 pages with 8 PS figures, RevTe

    Fano effect of a strongly interacting quantum dot in contact with superconductor

    Full text link
    The physics of a system consisting of an Aharonov Bohm (AB) interferometer containing a single level interacting quantum dot (QD) on one of its arms, and attached to normal (N) and superconducting (S) leads is studied and elucidated. Here the focus is directed mainly on N-AB-S junctions but the theory is capable of studying S-AB-S junctions as well. The interesting physics comes into play under the conditions that both the Kondo effect in the QD and the the Fano effect are equally important.It is found the conductance of the junction is suppressed as the Fano effect becomes more dominant.Comment: 4 pages, Talk to be given at the NATO Conference MQO, Bled, Slovenia 7-10 September 200

    Phase transition curves for mesoscopic superconducting samples

    Full text link
    We compute the phase transition curves for mesoscopic superconductors. Special emphasis is given to the limiting shape of the curve when the magnetic flux is large. We derive an asymptotic formula for the ground state of the Schr\"odinger equation in the presence of large applied flux. The expansion is shown to be sensitive to the smoothness of the domain. The theoretical results are compared to recent experiments.Comment: 8 pages, 1 figur

    Detection statistics in the micromaser

    Get PDF
    We present a general method for the derivation of various statistical quantities describing the detection of a beam of atoms emerging from a micromaser. The user of non-normalized conditioned density operators and a linear master equation for the dynamics between detection events is discussed as are the counting statistics, sequence statistics, and waiting time statistics. In particular, we derive expressions for the mean number of successive detections of atoms in one of any two orthogonal states of the two-level atom. We also derive expressions for the mean waiting times between detections. We show that the mean waiting times between de- tections of atoms in like states are equivalent to the mean waiting times calculated from the uncorrelated steady state detection rates, though like atoms are indeed correlated. The mean waiting times between detections of atoms in unlike states exhibit correlations. We evaluate the expressions for various detector efficiencies using numerical integration, reporting re- sults for the standard micromaser arrangement in which the cavity is pumped by excited atoms and the excitation levels of the emerging atoms are measured. In addition, the atomic inversion and the Fano-Mandel function for the detection of de-excited atoms is calculated for compari- son to the recent experimental results of Weidinger et al. [1], which reports the first observation of trapping states.Comment: 26 pages, 11 figure

    Kondo Effect in a Metal with Correlated Conduction Electrons: Diagrammatic Approach

    Full text link
    We study the low-temperature behavior of a magnetic impurity which is weakly coupled to correlated conduction electrons. To account for conduction electron interactions a diagrammatic approach in the frame of the 1/N expansion is developed. The method allows us to study various consequences of the conduction electron correlations for the ground state and the low-energy excitations. We analyse the characteristic energy scale in the limit of weak conduction electron interactions. Results are reported for static properties (impurity valence, charge susceptibility, magnetic susceptibility, and specific heat) in the low-temperature limit.Comment: 16 pages, 9 figure

    Conditional large Fock state preparation and field state reconstruction in Cavity QED

    Get PDF
    We propose a scheme for producing large Fock states in Cavity QED via the implementation of a highly selective atom-field interaction. It is based on Raman excitation of a three-level atom by a classical field and a quantized field mode. Selectivity appears when one tunes to resonance a specific transition inside a chosen atom-field subspace, while other transitions remain dispersive, as a consequence of the field dependent electronic energy shifts. We show that this scheme can be also employed for reconstructing, in a new and efficient way, the Wigner function of the cavity field state.Comment: 4 Revtex pages with 3 postscript figures. Submitted for publicatio

    Complete quantum teleportation with a Kerr nonlinearity

    Get PDF
    We present a scheme for the quantum teleportation of the polarization state of a photon employing a cross-Kerr medium. The experimental feasibility of the scheme is discussed and we show that, using the recently demonstrated ultraslow light propagation in cold atomic media, our proposal can be realized with presently available technology.Comment: 4 pages, revtex, 1 eps figur

    Revival-collapse phenomenon in the fluctuations of quadrature field components of the multiphoton Jaynes-Cummings model

    Full text link
    In this paper we consider a system consisting of a two-level atom, initially prepared in a coherent superposition of upper and lower levels, interacting with a radiation field prepared in generalized quantum states in the framework of multiphoton Jaynes-Cummings model. For this system we show that there is a class of states for which the fluctuation factors can exhibit revival-collapse phenomenon (RCP) similar to that exhibited in the corresponding atomic inversion. This is shown not only for normal fluctuations but also for amplitude-squared fluctuations. Furthermore, apart from this class of states we generally demonstrate that the fluctuation factors associated with three-photon transition can provide RCP similar to that occurring in the atomic inversion of the one-photon transition. These are novel results and their consequence is that RCP occurred in the atomic inversion can be measured via a homodyne detector. Furthermore, we discuss the influence of the atomic relative phases on such phenomenon.Comment: 17 pages, 4 figure
    corecore