69 research outputs found

    Dynamical Heterogeneity close to the Jamming Transition in a Sheared Granular Material

    Full text link
    The dynamics of a bi-dimensional dense granular packing under cyclic shear is experimentally investigated close to the jamming transition. Measurement of multi-point correlation functions are produced. The self-intermediate scattering function, displaying slower than exponential relaxation, suggests dynamic heterogeneity. Further analysis of four point correlation functions reveal that the grain relaxations are strongly correlated and spatially heterogeneous, especially at the time scale of the collective rearrangements. Finally, a dynamical correlation length is extracted from spatio-temporal pattern of mobility. Our experimental results open the way to a systematic study of dynamic correlation functions in granular materials.Comment: 4 pages, final version accepted for publication in Phys. Rev. Let

    Jamming transition of a granular pile below the angle of repose

    Full text link
    We study experimentally the relaxation towards mechanical equilibrium of a granular pile which has just experienced an avalanche and discuss it in the more general context of the granular jamming transition. Two coexisting dynamics are observed in the surface layer: a short time exponential decay consisting in rapid and independent moves of grains and intermittent bursts consisting in spatially correlated moves lasting for longer time. The competition of both dynamics results in long-lived intermittent transients, the total duration of which can late more than a thousand of seconds. We measure a two-time relaxation function, and relate it via a simple statistical model to a more usual two-time correlation function which exhibits strong similarities with auto-correlation functions found in aging systems. Localized perturbation experiments also allow us to test the pile surface layer receptivity.Comment: 9 pages, 10 figure

    Super-diffusion around the rigidity transition: Levy and the Lilliputians

    Full text link
    By analyzing the displacement statistics of an assembly of horizontally vibrated bidisperse frictional grains in the vicinity of the jamming transition experimentally studied before, we establish that their superdiffusive motion is a genuine Levy flight, but with `jump' size very small compared to the diameter of the grains. The vibration induces a broad distribution of jumps that are random in time, but correlated in space, and that can be interpreted as micro-crack events at all scales. As the volume fraction departs from the critical jamming density, this distribution is truncated at a smaller and smaller jump size, inducing a crossover towards standard diffusive motion at long times. This interpretation contrasts with the idea of temporally persistent, spatially correlated currents and raises new issues regarding the analysis of the dynamics in terms of vibrational modes.Comment: 7 pages, 6 figure

    Relevance of visco-plastic theory in a multi-directional inhomogeneous granular flow

    Get PDF
    We confront a recent visco-plastic description of dense granular flows [P. Jop et al, Nature, {\bf 441} (2006) 727] with multi-directional inhomogeneous steady flows observed in non-smooth contact dynamics simulations of 2D half-filled rotating drums. Special attention is paid to check separately the two underlying fundamental statements into which the considered theory can be recast, namely (i) a single relation between the invariants of stress and strain rate tensors and (ii) the alignment between these tensors. Interestingly, the first prediction is fairly well verified over more than four decades of small strain rate, from the surface rapid flow to the quasi-static creep phase, where it is usually believed to fail because of jamming. On the other hand, the alignment between stress and strain rate tensors is shown to fail over the whole flow, what yields an apparent violation of the visco-plastic rheology when applied without care. In the quasi-static phase, the particularly large misalignment is conjectured to be related to transient dilatancy effects

    Flow rule, self-channelization and levees in unconfined granular flows

    Full text link
    Unconfined granular flows along an inclined plane are investigated experimentally. During a long transient, the flow gets confined by quasistatic banks but still spreads laterally towards a well-defined asymptotic state following a nontrivial process. Far enough from the banks a scaling for the depth averaged velocity is obtained, which extends the one obtained for homogeneous steady flows. Close to jamming it exhibits a crossover towards a nonlocal rheology. We show that the levees, commonly observed along the sides of the deposit upon interruption of the flow, disappear for long flow durations. We demonstrate that the morphology of the deposit builds up during the flow, in the form of an underlying static layer, which can be deduced from surface velocity profiles, by imposing the same flow rule everywhere in the flow.Comment: 4 pages, 5 figure

    The building blocks of dynamical heterogeneities in dense granular media

    Full text link
    We investigate experimentally the connection between short time dynamics and long time dynamical heterogeneities within a dense granular media under cyclic shear. We show that dynamical heterogeneities result from a two timescales process. Short time but already collective events consisting in clustered cage jumps concentrate most of the non affine displacements. On larger timescales such clusters appear aggregated both temporally and spatially in avalanches which eventually build the large scales dynamical heterogeneities. Our results indicate that facilitation plays an important role in the relaxation process although it does not appear to be conserved as proposed in many models studied in the literature.Comment: 4 pages, 4 figure

    Avalanches and Dynamical Correlations in supercooled liquids

    Full text link
    We identify the pattern of microscopic dynamical relaxation for a two dimensional glass forming liquid. On short timescales, bursts of irreversible particle motion, called cage jumps, aggregate into clusters. On larger time scales, clusters aggregate both spatially and temporally into avalanches. This propagation of mobility, or dynamic facilitation, takes place along the soft regions of the systems, which have been identified by computing isoconfigurational Debye-Waller maps. Our results characterize the way in which dynamical heterogeneity evolves in moderately supercooled liquids and reveal that it is astonishingly similar to the one found for dense glassy granular media.Comment: 4 pages, 3 figure
    corecore