3,763 research outputs found
Surface-induced near-field scaling in the Knudsen layer of a rarefied gas
We report on experiments performed within the Knudsen boundary layer of a
low-pressure gas. The non-invasive probe we use is a suspended
nano-electro-mechanical string (NEMS), which interacts with He gas at
cryogenic temperatures. When the pressure is decreased, a reduction of the
damping force below molecular friction had been first reported in
Phys. Rev. Lett. Vol 113, 136101 (2014) and never reproduced since. We
demonstrate that this effect is independent of geometry, but dependent on
temperature. Within the framework of kinetic theory, this reduction is
interpreted as a rarefaction phenomenon, carried through the boundary layer by
a deviation from the usual Maxwell-Boltzmann equilibrium distribution induced
by surface scattering. Adsorbed atoms are shown to play a key role in the
process, which explains why room temperature data fail to reproduce it.Comment: Article plus supplementary materia
Effect of annealing on the superconducting properties of a-Nb(x)Si(1-x) thin films
a-Nb(x)Si(1-x) thin films with thicknesses down to 25 {\AA} have been
structurally characterized by TEM (Transmission Electron Microscopy)
measurements. As-deposited or annealed films are shown to be continuous and
homogeneous in composition and thickness, up to an annealing temperature of
500{\deg}C. We have carried out low temperature transport measurements on these
films close to the superconductor-to-insulator transition (SIT), and shown a
qualitative difference between the effect of annealing or composition, and a
reduction of the film thickness on the superconducting properties of a-NbSi.
These results question the pertinence of the sheet resistance R_square as the
relevant parameter to describe the SIT.Comment: 9 pages, 12 figure
Non-local permittivity from a quasi-static model for a class of wire media
A simple quasi-static model applicable to a wide class of wire media is
developed that explains strong non-locality in the dielectric response of wire
media in clear physical terms of effective inductance and capacitance per unit
length of a wire. The model is checked against known solutions and found to be
in excellent agreement with the results obtained by much more sophisticated
analytical and numerical methods. Special attention is given to suppression of
the spatial dispersion effects in wire media.Comment: 22 pagees, 4 figure
The Effects of Dissolved Methane upon Liquid Argon Scintillation Light
In this paper we report on measurements of the effects of dissolved methane
upon argon scintillation light. We monitor the light yield from an alpha source
held 20 cm from a cryogenic photomultiplier tube (PMT) assembly as methane is
injected into a high-purity liquid argon volume. We observe significant
suppression of the scintillation light yield by dissolved methane at the 10
part per billion (ppb) level. By examining the late scintillation light time
constant, we determine that this loss is caused by an absorption process and
also see some evidence of methane-induced scintillation quenching at higher
concentrations (50-100 ppb). Using a second PMT assembly we look for visible
re-emission features from the dissolved methane which have been reported in
gas-phase argon methane mixtures, and we find no evidence of visible
re-emission from liquid-phase argon methane mixtures at concentrations between
10 ppb and 0.1%.Comment: 18 pages, 11 figures Updated to match published versio
Slippage and boundary layer probed in an almost ideal gas by a nanomechanical oscillator
We have measured the interaction between He gas at 4.2K and a high-quality nano-electro-mechanical string device for its first 3 symmetric modes (resonating at 2.2MHz, 6.7MHz and 11MHz with quality factor million) over almost 6 orders of magnitude in pressure. This fluid can be viewed as the best experimental implementation of an almost-ideal monoatomic and inert gas which properties are tabulated. The experiment ranges from high pressure where the flow is of laminar Stokes-type presenting slippage, down to very low pressures where the flow is molecular. In the molecular regime, when the mean-free-path is of the order of the distance between the suspended nano-mechanical probe and the bottom of the trench we resolve for the first time the signature of the boundary (Knudsen) layer onto the measured dissipation. Our results are discussed in the framework of the most recent theories investigating boundary effects in fluids (both analytic approaches and Monte-Carlo DSMC simulations)
Cu NMR evidence for enhanced antiferromagnetic correlations around Zn impurities in YBa2Cu3O6.7
Doping the high-Tc superconductor YBa2Cu3O6.7 with 1.5 % of non-magnetic Zn
impurities in CuO2 planes is shown to produce a considerable broadening of 63Cu
NMR spectra, as well as an increase of low-energy magnetic fluctuations
detected in 63Cu spin-lattice relaxation measurements. A model-independent
analysis demonstrates that these effects are due to the development of
staggered magnetic moments on many Cu sites around each Zn and that the
Zn-induced moment in the bulk susceptibility might be explained by this
staggered magnetization. Several implications of these enhanced
antiferromagnetic correlations are discussed.Comment: 4 pages including 2 figure
- …
