54 research outputs found

    Site-selective cAMP analogs at micromolar concentrations induce growth arrest and differentiation of acute promyelocytic, chronic myelocytic, and acute lymphocytic human leukemia cell lines.

    Get PDF
    Cyclic AMP (cAMP)-dependent protein kinase may play a role in the functional and morphological differentiation of leukemic cells. In this study, we showed that the cAMP analogs, potent activators of protein kinase recently shown to be selective for either site 1 or site 2 cAMP binding sites of protein kinase, demonstrate potent growth inhibition of acute promyelocytic, chronic myelocytic, and acute lymphocytic leukemic cell lines with no sign of toxicity. The growth inhibition accompanied monocytic differentiation in HL-60 cells and a loss of nuclear terminal deoxynucleotidyl transferase activity in Molt-4 leukemic cells. The growth inhibition also paralleled a decrease in c-myc protein and RI cAMP receptor protein. Thus, cAMP analogs selective for either site 1 or site 2 of the protein kinase appear to restore a coupling of proliferation and maturation in leukemic cells

    Induction of megakaryocytic differentiation and modulation of protein kinase gene expression by site-selective cAMP analogs in K-562 human leukemic cells.

    Get PDF
    Two classes (site 1- and site 2-selective) of cAMP analogs, which either alone or in combination demonstrate a preference for binding to type II rather than type I cAMP-dependent protein kinase isozyme, potently inhibit growth in a spectrum of human cancer cell lines in culture. Treatment of K-562 human leukemic cells for 3 days with 30 and 10 microM 8-chloroadenosine 3',5'-cyclic monophosphate (8-Cl-cAMP) (site 1-selective) resulted in 60% and 20% growth inhibition, respectively (with over 90% viability). N6-Benzyl-cAMP (site 2-selective) (30 microM) treatment resulted in 20% growth inhibition by day 3. When 8-Cl-cAMP (10 microM) and N6-benzyl-cAMP (30 microM) were both added, growth was almost completely arrested. The growth inhibition was accompanied by megakaryocytic differentiation in K-562 cells. The untreated control cells expressed little or no detectable levels of glycoprotein IIb-IIIa surface antigen complex. 8-Cl-cAMP (30 microM) treatment for 3 days substantially increased the antigen expression, while N6-benzyl-cAMP caused little or no change in the antigen expression. When cells were treated with 8-Cl-cAMP in combination with N6-benzyl-cAMP, antigen expression was synergistically enhanced, and cells demonstrated megakaryocyte morphology. By Northern blotting, we examined the mRNA levels of the type I and type II protein kinase regulatory subunits (RI alpha and RII beta), the catalytic subunit, and c-myc during 8-Cl-cAMP treatment. The steady-state level of RII beta cAMP receptor mRNA sharply increased within 1 hr of treatment and remained elevated for 3 days, while that of the RI alpha receptor markedly decreased to below control level within 6 hr and remained low during treatment. However, 8-Cl-cAMP did not affect the mRNA level of the catalytic subunit. 8-Cl-cAMP treatment also brought about a rapid decrease in c-myc mRNA. Thus, differential regulation of cAMP receptor genes is an early event in cAMP-induced differentiation and growth control of K-562 leukemia cells

    A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus

    Get PDF
    The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses

    Human Metapneumovirus Inhibits IFN-β Signaling by Downregulating Jak1 and Tyk2 Cellular Levels

    Get PDF
    Human metapneumovirus (hMPV), a leading cause of respiratory tract infections in infants, inhibits type I interferon (IFN) signaling by an unidentified mechanism. In this study, we showed that infection of airway epithelial cells with hMPV decreased cellular level of Janus tyrosine kinase (Jak1) and tyrosine kinase 2 (Tyk2), due to enhanced proteosomal degradation and reduced gene transcription. In addition, hMPV infection also reduced the surface expression of type I IFN receptor (IFNAR). These inhibitory mechanisms are different from the ones employed by respiratory syncytial virus (RSV), which does not affect Jak1, Tyk2 or IFNAR expression, but degrades downstream signal transducer and activator of transcription proteins 2 (STAT2), although both viruses are pneumoviruses belonging to the Paramyxoviridae family. Our study identifies a novel mechanism by which hMPV inhibits STAT1 and 2 activation, ultimately leading to viral evasion of host IFN responses

    Innate Immune Suppression Enables Frequent Transfection with RNA Encoding Reprogramming Proteins

    Get PDF
    BACKGROUND: Generating autologous pluripotent stem cells for therapeutic applications will require the development of efficient DNA-free reprogramming techniques. Transfecting cells with in vitro-transcribed, protein-encoding RNA is a straightforward method of directly expressing high levels of reprogramming proteins without genetic modification. However, long-RNA transfection triggers a potent innate immune response characterized by growth inhibition and the production of inflammatory cytokines. As a result, repeated transfection with protein-encoding RNA causes cell death. METHODOLOGY/PRINCIPAL FINDINGS: RNA viruses have evolved methods of disrupting innate immune signaling by destroying or inhibiting specific proteins to enable persistent infection. Starting from a list of known viral targets, we performed a combinatorial screen to identify siRNA cocktails that could desensitize cells to exogenous RNA. We show that combined knockdown of interferon-beta (Ifnb1), Eif2ak2, and Stat2 rescues cells from the innate immune response triggered by frequent long-RNA transfection. Using this technique, we were able to transfect primary human fibroblasts every 24 hours with RNA encoding the reprogramming proteins Oct4, Sox2, Klf4, and Utf1. We provide evidence that the encoded protein is active, and we show that expression can be maintained for many days, through multiple rounds of cell division. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that suppressing innate immunity enables frequent transfection with protein-encoding RNA. This technique represents a versatile tool for investigating expression dynamics and protein interactions by enabling precise control over levels and timing of protein expression. Our finding also opens the door for the development of reprogramming and directed-differentiation methods based on long-RNA transfection

    Stunned Silence: Gene Expression Programs in Human Cells Infected with Monkeypox or Vaccinia Virus

    Get PDF
    Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV), an emerging human pathogen, and Vaccinia virus (VAC), a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated) MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA), or poly (I-C) was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C) induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection
    • …
    corecore