80 research outputs found

    Monte Carlo simulation method for Laughlin-like states in a disk geometry

    Get PDF
    We discuss an alternative accurate Monte Carlo method to calculate the ground-state energy and related quantities for Laughlin states of the fractional quantum Hall effect in a disk geometry. This alternative approach allows us to obtain accurate bulk regime (thermodynamic limit) values for various quantities from Monte Carlo simulations with a small number of particles (much smaller than that needed with standard Monte Carlo approaches).Comment: 13 pages, 6 figures, 2 table

    Spin dynamics of an ultra-small nanoscale molecular magnet

    Get PDF
    We present mathematical transformations which allow us to calculate the spin dynamics of an ultra-small nanoscale molecular magnet consisting of a dimer system of classical (high) Heisenberg spins. We derive exact analytic expressions (in integral form) for the time-dependent spin autocorrelation function and several other quantities. The properties of the time-dependent spin autocorrelation function in terms of various coupling parameters and temperature are discussed in detail

    Collective excitations in quantum Hall liquid crystals: Single-mode approximation calculations

    Get PDF
    A variety of recent experiments probing the low-temperature transport properties of quantum Hall systems have suggested an interpretation in terms of liquid crystalline mesophases dubbed {\em quantum Hall liquid crystals}. The single mode approximation (SMA) has been a useful tool for the determination of the excitation spectra of various systems such as phonons in 4^4He and in the fractional quantum Hall effect. In this paper we calculate (via the SMA) the spectrum of collective excitations in a quantum Hall liquid crystal by considering {\em nematic}, {\em tetratic}, and {\em hexatic} generalizations of Laughlin's trial wave function having two-, four- and six-fold broken rotational symmetry, respectively. In the limit of zero wavevector \qq the dispersion of these modes is singular, with a gap that is dependent on the direction along which \qq=0 is approached for {\em nematic} and {\em tetratic} liquid crystalline states, but remains regular in the {\em hexatic} state, as permitted by the fourth order wavevector dependence of the (projected) oscillator strength and static structure factor.Comment: 6 pages, 5 eps figures include

    Exact time correlation functions for N classical Heisenberg spins in the `squashed' equivalent neighbor model

    Full text link
    We present exact integral representations of the time-dependent spin-spin correlation functions for the classical Heisenberg N-spin `squashed' equivalent neighbor model, in which one spin is coupled via the Heisenberg exchange interaction with strength J1J_1 to the other N-1 spins, each of which is coupled via the Heisenberg exchange coupling with strength J2J_2 to the remaining N-2 spins. At low temperature T we find that the N spins oscillate in four modes, one of which is a central peak for a semi-infinite range of the values of the exchange coupling ratio. For the N=4 case of four spins on a squashed tetrahedron, detailed numerical evaluations of these results are presented. As T→∞T\to\infty, we calculate exactly the long-time asymptotic behavior of the correlation functions for arbitrary N, and compare our results with those obtained for three spins on an isosceles triangle.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Hypernetted-chain study of broken rotational symmetry states for the ν\bm{\nu} = 1/3 fractional quantum Hall effect and other fractionally filled Landau levels

    Get PDF
    We investigate broken rotational symmetry (BRS) states for the fractional quantum Hall effect (FQHE) at 1/3-filling of the valence Landau level (LL). Recent Monte Carlo calculations by Musaelian and Joynt [J. Phys.: Condens.\ Matter {\bf 8}, L105 (1996)] suggest that Laughlin's state becomes unstable to a BRS state for some critical finite thickness value. We study in detail the properties of such state by performing a hypernetted-chain calculation that gives results in the thermodynamic limit, complementing other methods which are limited to a finite number of particles. Our results indicate that while Laughlin's state is stable in the lowest LL, in higher LLs a BRS instability occurs, perhaps indicating the absence of FQHE at partial fillings of higher LLs. Possible connections to the newly discovered liquid crystalline phases in higher LLs are also discussed.Comment: 7 pages including 3 eps figure

    Sound Propagation in Nematic Fermi Liquid

    Full text link
    We study the longitudinal sound propagation in the electronic nematic Fermi liquid where the Fermi surface is distorted due to the spontaneously broken rotational symmetry. The behavior of the sound wave in the nematic ordered state is dramatically different from that in the isotropic Fermi liquid. The collective modes associated with the fluctuations of the Fermi surface distortion in the nematic Fermi liquid leads to the strong and anisotropic damping of the sound wave. The relevance of the nematic Fermi liquid in doped Mott insulator is discussed.Comment: 4 pages, no figur

    Covalency effects on the magnetism of EuRh2P2

    Full text link
    In experiments, the ternary Eu pnictide EuRh2P2 shows an unusual coexistence of a non-integral Eu valence of about 2.2 and a rather high Neel temperature of 50 K. In this paper, we present a model which explains the non-integral Eu valence via covalent bonding of the Eu 4f-orbitals to P2 molecular orbitals. In contrast to intermediate valence models where the hybridization with delocalized conduction band electrons is known to suppress magnetic ordering temperatures to at most a few Kelvin, covalent hybridization to the localized P2 orbitals avoids this suppression. Using perturbation theory we calculate the valence, the high temperature susceptibility, the Eu single-ion anisotropy and the superexchange couplings of nearest and next-nearest neighbouring Eu ions. The model predicts a tetragonal anisotropy of the Curie constants. We suggest an experimental investigation of this anisotropy using single crystals. From experimental values of the valence and the two Curie constants, the three free parameters of our model can be determined.Comment: 9 pages, 5 figures, submitted to J. Phys.: Condens. Matte

    Three strongly correlated charged bosons in a one-dimensional harmonic trap: natural orbital occupancies

    Full text link
    We study a one-dimensional system composed of three charged bosons confined in an external harmonic potential. More precisely, we investigate the ground-state correlation properties of the system, paying particular attention to the strong-interaction limit. We explain for the first time the nature of the degeneracies appearing in this limit in the spectrum of the reduced density matrix. An explicit representation of the asymptotic natural orbitals and their occupancies is given in terms of some integral equations.Comment: 6 pages, 4 figures, To appear in European Physical Journal

    A geometric approach to time evolution operators of Lie quantum systems

    Full text link
    Lie systems in Quantum Mechanics are studied from a geometric point of view. In particular, we develop methods to obtain time evolution operators of time-dependent Schrodinger equations of Lie type and we show how these methods explain certain ad hoc methods used in previous papers in order to obtain exact solutions. Finally, several instances of time-dependent quadratic Hamiltonian are solved.Comment: Accepted for publication in the International Journal of Theoretical Physic
    • …
    corecore