28 research outputs found

    ESKIMO1 Disruption in Arabidopsis Alters Vascular Tissue and Impairs Water Transport

    Get PDF
    Water economy in agricultural practices is an issue that is being addressed through studies aimed at understanding both plant water-use efficiency (WUE), i.e. biomass produced per water consumed, and responses to water shortage. In the model species Arabidopsis thaliana, the ESKIMO1 (ESK1) gene has been described as involved in freezing, cold and salt tolerance as well as in water economy: esk1 mutants have very low evapo-transpiration rates and high water-use efficiency. In order to establish ESK1 function, detailed characterization of esk1 mutants has been carried out. The stress hormone ABA (abscisic acid) was present at high levels in esk1 compared to wild type, nevertheless, the weak water loss of esk1 was independent of stomata closure through ABA biosynthesis, as combining mutant in this pathway with esk1 led to additive phenotypes. Measurement of root hydraulic conductivity suggests that the esk1 vegetative apparatus suffers water deficit due to a defect in water transport. ESK1 promoter-driven reporter gene expression was observed in xylem and fibers, the vascular tissue responsible for the transport of water and mineral nutrients from the soil to the shoots, via the roots. Moreover, in cross sections of hypocotyls, roots and stems, esk1 xylem vessels were collapsed. Finally, using Fourier-Transform Infrared (FTIR) spectroscopy, severe chemical modifications of xylem cell wall composition were highlighted in the esk1 mutants. Taken together our findings show that ESK1 is necessary for the production of functional xylem vessels, through its implication in the laying down of secondary cell wall components

    Characterization of boron carbide thin films fabricated by plasma enhanced chemical vapor deposition from boranes

    Get PDF
    We have fabricated boron carbide thin films on Si(111) and other substrates by plasma-enhanced chemical-vapor deposition (PECVD). The PECVD of boron carbides from nido-cage boranes, specially nido-pentaborane(9) (B5H9), and methane ( CH4) is demonstrated. The band gap is closely correlated with the boron to carbon ratio and can range from 0.77 to 1.80 eV and is consistent with the thermal activation barrier of 1.25 eV for conductivity. We have made boron carbide by PECVD from pentaborane and methane that is sufficiently isotropic to obtain resistivities as large as 1010 Ω cm at room temperature. This material is also shown to be suitable for photoactive p-n heterojunction diode fabrication in combination with Si( 111)

    Effects of glutamate transport substrates and glutamate receptor ligands on the activity of Na+/K+-ATPase in brain tissue in vitro

    No full text
    1. It has been suggested that Na+/K+-ATPase and Na+-dependent glutamate transport (GluT) are tightly linked in brain tissue. In the present study, we have investigated Na+/K +-ATPase activity using Rb+ uptake by 'minislices' (prisms) of the cerebral cortex. This preparation preserves the morphology of neurons, synapses and astrocytes and is known to possess potent GluT that has been well characterized. Uptake of Rb+ was determined by estimating Rb+ in aqueous extracts of the minislices, using atomic absorption spectroscopy. 2. We determined the potencies of several known substrates/inhibitors of GluT, such as L-trans-pyrrolidine-2,4-dicarboxylate (LtPDC), DL-threo-3-benzyloxyaspartic acid, (2S,3S,4R)-2-(carboxycyclopropyl)- glycine (L-CCG III) and L-anti,endo-3,4-methanopyrrolidine dicarboxylic acid, as inhibitors of [3H]-L-glutamate uptake by cortical prisms. In addition, we established the susceptibility of GluT, measured as [ 3H]-L-glutamate uptake in brain cortical prisms, to the inhibition of Na+/K+-ATPase by ouabain. Then, we tested the hypothesis that the Na+/K+-ATPase (measured as Rb+ uptake) can respond to changes in the activity of GluT produced by using GluT substrates as GluT-specific pharmacological tools. 3. The Na+/K +-ATPase inhibitor ouabain completely blocked Rb+ uptake (IC50 = 17 ÎĽmol/L), but it also potently inhibited a fraction of GluT (approximately 50% of [3H]-L-glutamate uptake was eliminated; IC50 < 1 ÎĽmol/L). 4. None of the most commonly used GluT substrates and inhibitors, such as L-aspartate, D-aspartate, L-CCG III and LtPDC (all at 500 ÎĽmol/L), produced any significant changes in Rb+ uptake. 5. The N-methyl-D-aspartate (NMDA) receptor agonists (R,S)-(tetrazol-5-yl)-glycine and NMDA decreased Rb+ uptake in a manner compatible with their known neurotoxic actions. 6. None of the agonists or antagonists for any of the other major classes of glutamate receptors caused significant changes in Rb+ uptake. 7. We conclude that, even if a subpopulation of glutamate transporters in the rat cerebral cortex may be intimately linked to a fraction of Na+/K+-ATPase, it is not possible, under the present experimental conditions, to detect regulation of Na+/K+-ATPase by GluT.Fil: Acosta, Gabriela Beatriz. ININFA; Argentin
    corecore