52 research outputs found

    Field quantization in inhomogeneous anisotropic dielectrics with spatio-temporal dispersion

    Get PDF
    A quantum damped-polariton model is constructed for an inhomogeneous anisotropic linear dielectric with arbitrary dispersion in space and time. The model Hamiltonian is completely diagonalized by determining the creation and annihilation operators for the fundamental polariton modes as specific linear combinations of the basic dynamical variables. Explicit expressions are derived for the time-dependent operators describing the electromagnetic field, the dielectric polarization and the noise term in the latter. It is shown how to identify bath variables that generate the dissipative dynamics of the medium.Comment: 24 page

    Electric-octupole and pure-electric-quadrupole effects in soft-x-ray photoemission

    Get PDF
    Second-order [O(k^2), k=omega/c] nondipole effects in soft-x-ray photoemission are demonstrated via an experimental and theoretical study of angular distributions of neon valence photoelectrons in the 100--1200 eV photon-energy range. A newly derived theoretical expression for nondipolar angular distributions characterizes the second-order effects using four new parameters with primary contributions from pure-quadrupole and octupole-dipole interference terms. Independent-particle calculations of these parameters account for a significant portion of the existing discrepancy between experiment and theory for Ne 2p first-order nondipole parameters.Comment: 4 pages, 3 figure

    Correlation structure in nondipole photoionization

    Full text link
    The nondipole parameters that characterize the angular disribution of the photoelectrons from the 3d subshell of Cs are found to be altered qualitatively by the inclusion of correlation in the form of interchannel coupling between the 3d3/23d_{3/2} and 3d5/23d_{5/2} photoionization channels. A prominent characteristic maximum is predicted only in the parameters for 3d5/23d_{5/2} photoionization, while the effect for 3d3/23d_{3/2} is rather weak. The results are obtained within the framework of the Generalized Random Phase Approximation with Exchange (GRPAE), which in addition to the RPAE effects takes into account the rearrangement of all atomic electrons due to the creation of a 3d vacancy

    Selective PDE4 subtype inhibition provides new opportunities to intervene in neuroinflammatory versus myelin damaging hallmarks of multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by focal inflammatory lesions and prominent demyelination. Even though the currently available therapies are effective in treating the initial stages of disease, they are unable to halt or reverse disease progression into the chronic progressive stage. Thus far, no repair-inducing treatments are available for progressive MS patients. Hence, there is an urgent need for the development of new therapeutic strategies either targeting the destructive immunological demyelination or boosting endogenous repair mechanisms. Using in vitro, ex vivo, and in vivo models, we demonstrate that selective inhibition of phosphodiesterase 4 (PDE4), a family of enzymes that hydrolyzes and inactivates cyclic adenosine monophosphate (cAMP), reduces inflammation and promotes myelin repair. More specifically, we segregated the myelination-promoting and anti-inflammatory effects into a PDE4D- and PDE4B-dependent process respectively. We show that inhibition of PDE4D boosts oligodendrocyte progenitor cells (OPC) differentiation and enhances (re)myelination of both murine OPCs and human iPSC-derived OPCs. In addition, PDE4D inhibition promotes in vivo remyelination in the cuprizone model, which is accompanied by improved spatial memory and reduced visual evoked potential latency times. We further identified that PDE4B-specific inhibition exerts anti-inflammatory effects since it lowers in vitro monocytic nitric oxide (NO) production and improves in vivo neurological scores during the early phase of experimental autoimmune encephalomyelitis (EAE). In contrast to the pan PDE4 inhibitor roflumilast, the therapeutic dose of both the PDE4B-specific inhibitor A33 and the PDE4D-specific inhibitor Gebr32a did not trigger emesis-like side effects in rodents. Finally, we report distinct PDE4D isoform expression patterns in human area postrema neurons and human oligodendroglia lineage cells. Using the CRISPR-Cas9 system, we confirmed that pde4d1/2 and pde4d6 are the key targets to induce OPC differentiation. Collectively, these data demonstrate that gene specific PDE4 inhibitors have potential as novel therapeutic agents for targeting the distinct disease processes of MS

    Quantization rule solution to the Hulth\'en potential in arbitrary dimension by a new approximate scheme for the centrifugal term

    Full text link
    The bound state energies and wave functions for a particle exposed to the Hulth\'en potential field in the D-dimensional space are obtained within the improved quantization rule for any arbitrary l state. The present approximation scheme used to deal with the centrifugal term in the effective Hulth\'en potential is systematic and accurate. The solutions for the three-dimensional (D=3) case and the s-wave (l=0) case are briefly discussed. Keywords: Hulth\'en potential, improved quantization rule, approximation schemes. 03.65.Ge, 12.39.JhComment: 15 pages. arXiv admin note: substantial text overlap with arXiv:1009.508

    Regeneration of myelin sheaths of normal length and thickness in the zebrafish CNS correlates with growth of axons in caliber

    Get PDF
    Demyelination is observed in numerous diseases of the central nervous system, including multiple sclerosis (MS). However, the endogenous regenerative process of remyelination can replace myelin lost in disease, and in various animal models. Unfortunately, the process of remyelination often fails, particularly with ageing. Even when remyelination occurs, it is characterised by the regeneration of myelin sheaths that are abnormally thin and short. This imperfect remyelination is likely to have implications for the restoration of normal circuit function and possibly the optimal metabolic support of axons. Here we describe a larval zebrafish model of demyelination and remyelination. We employ a drug-inducible cell ablation system with which we can consistently ablate 2/3rds of oligodendrocytes in the larval zebrafish spinal cord. This leads to a concomitant demyelination of 2/3rds of axons in the spinal cord, and an innate immune response over the same time period. We find restoration of the normal number of oligodendrocytes and robust remyelination approximately two weeks after induction of cell ablation, whereby myelinated axon number is restored to control levels. Remarkably, we find that myelin sheaths of normal length and thickness are regenerated during this time. Interestingly, we find that axons grow significantly in caliber during this period of remyelination. This suggests the possibility that the active growth of axons may stimulate the regeneration of myelin sheaths of normal dimensions

    Renal MRI: from nephron to NMR signal

    No full text
    Renal diseases pose a significant socio-economic burden on healthcare systems. The development of better diagnostics and prognostics is well-recognized as a key strategy to resolve these challenges. Central to these developments are MRI biomarkers, due to their potential for monitoring of early pathophysiological changes, renal disease progression or treatment effects. The surge in renal MRI involves major cross-domain initiatives, large clinical studies, and educational programs. In parallel with these translational efforts, the need for greater (patho)physiological specificity remains, to enable engagement with clinical nephrologists and increase the associated health impact. The ISMRM 2022 Member Initiated Symposium (MIS) on renal MRI spotlighted this issue with the goal of inspiring more solutions from the ISMRM community. This work is a summary of the MIS presentations devoted to: 1) educating imaging scientists and clinicians on renal (patho)physiology and demands from clinical nephrologists, 2) elucidating the connection of MRI parameters with renal physiology, 3) presenting the current state of leading MR surrogates in assessing renal structure and functions as well as their next generation of innovation, and 4) describing the potential of these imaging markers for providing clinically meaningful renal characterization to guide or supplement clinical decision making. We hope to continue momentum of recent years and introduce new entrants to the development process, connecting (patho)physiology with (bio)physics, and conceiving new clinical applications. We envision this process to benefit from cross-disciplinary collaboration and analogous efforts in other body organs, but also to maximally leverage the unique opportunities of renal physiology
    corecore