4,192 research outputs found

    Hadron collider limits on anomalous WWÎłWW\gamma couplings

    Full text link
    A next-to-leading log calculation of the reactions pppp and pp‾→W±γXp\overline{p}\rightarrow W^\pm\gamma X is presented including a tri-boson gauge coupling from non-Standard Model contributions. Two approaches are made for comparison. The first approach considers the tri-boson WWγWW\gamma coupling as being uniquely fixed by tree level unitarity at high energies to its Standard Model form and, consequently, suppresses the non-Standard Model contributions with form factors. The second approach is to ignore such considerations and calculate the contributions to non-Standard Model tri-boson gauge couplings without such suppressions. It is found that at Tevatron energies, the two approaches do not differ much in quantitative results, while at Large Hadron Collider (LHC) energies the two approaches give significantly different predictions for production rates. At the Tevatron and LHC, however, the sensitivity limits on the anomalous coupling of WWγWW\gamma are too weak to usefully constrain parameters in effective Lagrangian models.Comment: Revtex 23 pages + 8 figures, UIOWA-94-1

    Higher-order QED corrections to W-boson mass determination at hadron colliders

    Full text link
    The impact of higher-order final-state photonic corrections on the precise determination of the W-boson mass at the Tevatron and LHC colliders is evaluated. In the presence of realistic selection criteria, the shift in the W mass from a fit to the transverse mass distribution is found to be about 10 MeV in the W→μνW \to \mu \nu channel and almost negligible in the W→eνW \to e \nu channel. The calculation, which is implemented in a Monte Carlo event generator for data analysis, can contribute to reduce the uncertainty associated to the W mass measurement at future hadron collider experiments.Comment: 9 pages, 2 figures, 1 table, RevTe

    Deep semi-supervised segmentation with weight-averaged consistency targets

    Full text link
    Recently proposed techniques for semi-supervised learning such as Temporal Ensembling and Mean Teacher have achieved state-of-the-art results in many important classification benchmarks. In this work, we expand the Mean Teacher approach to segmentation tasks and show that it can bring important improvements in a realistic small data regime using a publicly available multi-center dataset from the Magnetic Resonance Imaging (MRI) domain. We also devise a method to solve the problems that arise when using traditional data augmentation strategies for segmentation tasks on our new training scheme.Comment: 8 pages, 1 figure, accepted for DLMIA/MICCA

    Vector Boson Pair Production in Hadronic Collisions at Order αs\alpha_s: Lepton Correlations and Anomalous Couplings

    Full text link
    We present cross sections for production of electroweak vector boson pairs, WWWW, WZWZ and ZZZZ, in ppˉp\bar{p} and pppp collisions, at next-to-leading order in αs\alpha_s. We treat the leptonic decays of the bosons in the narrow-width approximation, but retain all spin information via decay angle correlations. We also include the effects of WWZWWZ and WWγWW\gamma anomalous couplings.Comment: 23 pages, 8 figures, 3 table

    Probing Trilinear Gauge Boson Interactions via Single Electroweak Gauge Boson Production at the LHC

    Get PDF
    We analyze the potential of the CERN Large Hadron Collider (LHC) to study anomalous trilinear vector-boson interactions W^+ W^- \gamma and W^+ W^- Z through the single production of electroweak gauge bosons via the weak boson fusion processes q q -> q q W (-> \ell^\pm \nu) and q q -> q q Z(-> \ell^+ \ell^-) with \ell = e or \mu. After a careful study of the standard model backgrounds, we show that the single production of electroweak bosons at the LHC can provide stringent tests on deviations of these vertices from the standard model prediction. In particular, we show that single gauge boson production exhibits a sensitivity to the couplings \Delta \kappa_{Z,\gamma} similar to that attainable from the analysis of electroweak boson pair production.Comment: 20 pages, 6 figure

    Domain and Geometry Agnostic CNNs for Left Atrium Segmentation in 3D Ultrasound

    Full text link
    Segmentation of the left atrium and deriving its size can help to predict and detect various cardiovascular conditions. Automation of this process in 3D Ultrasound image data is desirable, since manual delineations are time-consuming, challenging and observer-dependent. Convolutional neural networks have made improvements in computer vision and in medical image analysis. They have successfully been applied to segmentation tasks and were extended to work on volumetric data. In this paper we introduce a combined deep-learning based approach on volumetric segmentation in Ultrasound acquisitions with incorporation of prior knowledge about left atrial shape and imaging device. The results show, that including a shape prior helps the domain adaptation and the accuracy of segmentation is further increased with adversarial learning

    Exclusive W + photon production in proton-antiproton collisions I: general formalism

    Full text link
    We present a detailed computation of the fully exclusive cross section of p + antip --> W + photon + X with X = 0 and 1 jet in the framework of the factorization theorem and dimensional regularization. Order alpha-strong and photon bremsstrahlung contributions are discussed in the MS-bar mass factorization scheme. The resulting expressions are ready to be implemented numerically using Monte Carlo techniques to compute single and double differential cross sections and correlations between outgoing pairs of particles.Comment: ITP-SB-93-72, 40 pages, LateX. 3*4 figures in separate file. ([email protected]) ([email protected]
    • …
    corecore