2,191 research outputs found
Parallel Unsmoothed Aggregation Algebraic Multigrid Algorithms on GPUs
We design and implement a parallel algebraic multigrid method for isotropic
graph Laplacian problems on multicore Graphical Processing Units (GPUs). The
proposed AMG method is based on the aggregation framework. The setup phase of
the algorithm uses a parallel maximal independent set algorithm in forming
aggregates and the resulting coarse level hierarchy is then used in a K-cycle
iteration solve phase with a -Jacobi smoother. Numerical tests of a
parallel implementation of the method for graphics processors are presented to
demonstrate its effectiveness.Comment: 18 pages, 3 figure
Adaptive grid methods for Q-tensor theory of liquid crystals : a one-dimensional feasibility study
This paper illustrates the use of moving mesh methods for solving partial differential equation (PDE) problems in Q-tensor theory of liquid crystals. We present the results of an initial study using a simple one-dimensional test problem which illustrates the feasibility of applying adaptive grid techniques in such situations. We describe how the grids are computed using an equidistribution principle, and investigate the comparative accuracy of adaptive and uniform grid strategies, both theoretically and via numerical examples
One step multiderivative methods for first order ordinary differential equations
A family of one-step multiderivative methods based on Padé approximants to the exponential function is developed.
The methods are extrapolated and analysed for use in PECE mode.
Error constants and stability intervals are calculated and the combinations compared with well known linear multi-step combinations and combinations using high accuracy Newton-Cotes quadrature formulas as correctors.
w926020
Separation of Test-Free Propositional Dynamic Logics over Context-Free Languages
For a class L of languages let PDL[L] be an extension of Propositional
Dynamic Logic which allows programs to be in a language of L rather than just
to be regular. If L contains a non-regular language, PDL[L] can express
non-regular properties, in contrast to pure PDL.
For regular, visibly pushdown and deterministic context-free languages, the
separation of the respective PDLs can be proven by automata-theoretic
techniques. However, these techniques introduce non-determinism on the automata
side. As non-determinism is also the difference between DCFL and CFL, these
techniques seem to be inappropriate to separate PDL[DCFL] from PDL[CFL].
Nevertheless, this separation is shown but for programs without test operators.Comment: In Proceedings GandALF 2011, arXiv:1106.081
Recommended from our members
Improving the condition number of estimated covariance matrices
High dimensional error covariance matrices and their inverses are used to weight the
contribution of observation and background information in data assimilation procedures. As
observation error covariance matrices are often obtained by sampling methods, estimates are
often degenerate or ill-conditioned, making it impossible to invert an observation error
covariance matrix without the use of techniques to reduce its condition number. In this paper
we present new theory for two existing methods that can be used to ‘recondition’ any covariance
matrix: ridge regression, and the minimum eigenvalue method. We compare these methods
with multiplicative variance inflation, which cannot alter the condition number of a matrix, but
is often used to account for neglected correlation information. We investigate the impact of
reconditioning on variances and correlations of a general covariance matrix in both a theoretical
and practical setting. Improved theoretical understanding provides guidance to users regarding
method selection, and choice of target condition number. The new theory shows that, for the
same target condition number, both methods increase variances compared to the original
matrix, with larger increases for ridge regression than the minimum eigenvalue method. We
prove that the ridge regression method strictly decreases the absolute value of off-diagonal
correlations. Theoretical comparison of the impact of reconditioning and multiplicative
variance inflation on the data assimilation objective function shows that variance inflation alters
information across all scales uniformly, whereas reconditioning has a larger effect on scales
corresponding to smaller eigenvalues. We then consider two examples: a general correlation
function, and an observation error covariance matrix arising from interchannel correlations. The
minimum eigenvalue method results in smaller overall changes to the correlation matrix than
ridge regression, but can increase off-diagonal correlations. Data assimilation experiments reveal
that reconditioning corrects spurious noise in the analysis but underestimates the true signal
compared to multiplicative variance inflation
Dynamo effect in parity-invariant flow with large and moderate separation of scales
It is shown that non-helical (more precisely, parity-invariant) flows capable
of sustaining a large-scale dynamo by the negative magnetic eddy diffusivity
effect are quite common. This conclusion is based on numerical examination of a
large number of randomly selected flows. Few outliers with strongly negative
eddy diffusivities are also found, and they are interpreted in terms of the
closeness of the control parameter to a critical value for generation of a
small-scale magnetic field. Furthermore, it is shown that, for parity-invariant
flows, a moderate separation of scales between the basic flow and the magnetic
field often significantly reduces the critical magnetic Reynolds number for the
onset of dynamo action.Comment: 44 pages,11 figures, significantly revised versio
Biochemical characterization of human gluconokinase and the proposed metabolic impact of gluconic acid as determined by constraint based metabolic network analysis.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files.
This article is open access.The metabolism of gluconate is well characterized in prokaryotes where it is known to be degraded following phosphorylation by gluconokinase. Less is known of gluconate metabolism in humans. Human gluconokinase activity was recently identified proposing questions about the metabolic role of gluconate in humans. Here we report the recombinant expression, purification and biochemical characterization of isoform I of human gluconokinase alongside substrate specificity and kinetic assays of the enzyme catalyzed reaction. The enzyme, shown to be a dimer, had ATP dependent phosphorylation activity and strict specificity towards gluconate out of 122 substrates tested. In order to evaluate the metabolic impact of gluconate in humans we modeled gluconate metabolism using steady state metabolic network analysis. The results indicate that significant metabolic flux changes in anabolic pathways linked to the hexose monophosphate shunt (HMS) are induced through a small increase in gluconate concentration. We argue that the enzyme takes part in a context specific carbon flux route into the HMS that, in humans, remains incompletely explored. Apart from the biochemical description of human gluconokinase, the results highlight that little is known of the mechanism of gluconate metabolism in humans despite its widespread use in medicine and consumer products.info:eu-repo/grantAgreement/EC/FP7/23281
CFD investigation of a complete floating offshore wind turbine
This chapter presents numerical computations for floating offshore wind turbines for a machine of 10-MW rated power. The rotors were computed using the Helicopter Multi-Block flow solver of the University of Glasgow that solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. Hydrodynamic loads on the support platform were computed using the Smoothed Particle Hydrodynamics method. This method is mesh-free, and represents the fluid by a set of discrete particles. The motion of the floating offshore wind turbine is computed using a Multi-Body Dynamic Model of rigid bodies and frictionless joints. Mooring cables are modelled as a set of springs and dampers. All solvers were validated separately before coupling, and the loosely coupled algorithm used is described in detail alongside the obtained results
The Monge-Ampere equation: various forms and numerical methods
We present three novel forms of the Monge-Ampere equation, which is used,
e.g., in image processing and in reconstruction of mass transportation in the
primordial Universe. The central role in this paper is played by our Fourier
integral form, for which we establish positivity and sharp bound properties of
the kernels. This is the basis for the development of a new method for solving
numerically the space-periodic Monge-Ampere problem in an odd-dimensional
space. Convergence is illustrated for a test problem of cosmological type, in
which a Gaussian distribution of matter is assumed in each localised object,
and the right-hand side of the Monge-Ampere equation is a sum of such
distributions.Comment: 24 pages, 2 tables, 5 figures, 32 references. Submitted to J.
Computational Physics. Times of runs added, multiple improvements of the
manuscript implemented
Nonlinear resonance in a three-terminal carbon nanotube resonator
The RF-response of a three-terminal carbon nanotube resonator coupled to
RF-transmission lines is studied by means of perturbation theory and direct
numerical integration. We find three distinct oscillatory regimes, including
one regime capable of exhibiting very large hysteresis loops in the frequency
response. Considering a purely capacitive transduction, we derive a set of
algebraic equations which can be used to find the output power (S-parameters)
for a device connected to transmission lines with characteristic impedance
.Comment: 16 pages, 8 figure
- …
