102 research outputs found

    Wigner islands with electrons over helium

    Full text link
    We present here the first experimental study of Wigner islands formed by electrons floating over helium. Electrons are trapped electrostatically in a mesoscopic structure covered with a helium film, behaving as a quantum dot. By removing electrons one by one, we are able to find the addition spectrum, i.e. the energy required to add (or extract) one electron from the trap with occupation number NN. Experimental addition spectra are compared with Monte Carlo simulations for the actual trap geometry, confirming the ordered state of electrons over helium in the island.Comment: 12 pages, 13 figures, draft pape

    Detection of the Rotation of the Earth with a Superfluid Gyrometer

    Get PDF
    The effect of the rotation of the Earth, Ω⊕, on a superfluid resonator equipped with a 4.0 cm exp 2 rotation pickup loop and with a microaperture is reported. The velocity circulation induced in the loop by the rotation is detected by phase-slippage techniques. The magnitude of Ω⊕ is measured to better than 1%, and the north direction to ±0.5° for a 10 h observation time. This experiment is the superfluid counterpart of interferometric measurements based on the Sagnac effect.Peer reviewe

    Evidence for Single-Vortex Pinning and Unpinning Events in Superfluid 4He

    Get PDF
    We have observed two critical velocity levels for phase slips in superfluid 4He at temperatures between 14 and 44 mK, due to microparticles formed in the cell at low temperature. We interpret these observations as evidence for pinning and unpinning events of single vortices of nanometric size. From a study of the lifetime and unpinning velocities of the pinned vortices, we are led to conclude that unpinning takes place by quantum tunneling.Peer reviewe

    Quantum whistling in superfluid 4He

    Full text link
    Fundamental considerations predict that macroscopic quantum systems such as superfluids and the electrons in superconductors will exhibit oscillatory motion when pushed through a small constriction. Here we report the observation of these oscillations between two reservoirs of superfluid 4He partitioned by an array of nanometer-sized apertures. They obey the Josephson frequency equation and are coherent amongst all the apertures. This discovery at the relatively high temperature of 2K (2000 times higher than related phenomena in 3He) may pave the way for a new class of practical rotation sensors of unprecedented precision.Comment: 6 pages, 3 figures, to be published in Natur

    Search for supersolidity in 4He in low-frequency sound experiments

    Full text link
    We present results of the search for supersolid 4He using low-frequency, low-level mechanical excitation of a solid sample grown and cooled at fixed volume. We have observed low frequency non-linear resonances that constitute anomalous features. These features, which appear below about 0.8 K, are absent in 3He. The frequency, the amplitude at which the nonlinearity sets in, and the upper temperature limit of existence of these resonances depend markedly on the sample history.Comment: Submitted to the Quantum Fluids and Solids Conf. Aug. 2006 Kyot

    Pinhole calculations of the Josephson effect in 3He-B

    Full text link
    We study theoretically the dc Josephson effect between two volumes of superfluid 3He-B. We first discuss how the calculation of the current-phase relationships is divided into a mesoscopic and a macroscopic problem. We then analyze mass and spin currents and the symmetry of weak links. In quantitative calculations the weak link is assumed to be a pinhole, whose size is small in comparison to the coherence length. We derive a quasiclassical expression for the coupling energy of a pinhole, allowing also for scattering in the hole. Using a selfconsistent order parameter near a wall, we calculate the current-phase relationships in several cases. In the isotextural case, the current-phase relations are plotted assuming a constant spin-orbit texture. In the opposite anisotextural case the texture changes as a function of the phase difference. For that we have to consider the stiffness of the macroscopic texture, and we also calculate some surface interaction parameters. We analyze the experiments by Marchenkov et al. We find that the observed pi states and bistability hardly can be explained with the isotextural pinhole model, but a good quantitative agreement is achieved with the anisotextural model.Comment: 20 pages, 21 figures, revtex

    Trapping electrons in electrostatic traps over the surface of helium

    Full text link
    We have observed trapping of electrons in an electrostatic trap formed over the surface of liquid helium-4. These electrons are detected by a Single Electron Transistor located at the centre of the trap. We can trap any desired number of electrons between 1 and 30\sim 30. By repeatedly (103104\sim 10^3-10^4 times) putting a single electron into the trap and lowering the electrostatic barrier of the trap, we can measure the effective temperature of the electron and the time of its thermalisation after heating up by incoherent radiation.Comment: Presented at QFS06 - Kyoto, to be published in J. Low Temp. Phys., 6 pages, 3 figure

    Transition from phase slips to the Josephson effect in a superfluid 4He weak link

    Full text link
    The rich dynamics of flow between two weakly coupled macroscopic quantum reservoirs has led to a range of important technologies. Practical development has so far been limited to superconducting systems, for which the basic building block is the so-called superconducting Josephson weak link. With the recent observation of quantum oscillations in superfluid 4He near 2K, we can now envision analogous practical superfluid helium devices. The characteristic function which determines the dynamics of such systems is the current-phase relation Is(phi), which gives the relationship between the superfluid current Is flowing through a weak link and the quantum phase difference phi across it. Here we report the measurement of the current-phase relation of a superfluid 4He weak link formed by an array of nano-apertures separating two reservoirs of superfluid 4He. As we vary the coupling strength between the two reservoirs, we observe a transition from a strongly coupled regime in which Is(phi) is linear and flow is limited by 2pi phase slips, to a weak coupling regime where Is(phi) becomes the sinusoidal signature of a Josephson weak link.Comment: 12 pages, 4 figure

    Geometric Laws of Vortex Quantum Tunneling

    Full text link
    In the semiclassical domain the exponent of vortex quantum tunneling is dominated by a volume which is associated with the path the vortex line traces out during its escape from the metastable well. We explicitly show the influence of geometrical quantities on this volume by describing point vortex motion in the presence of an ellipse. It is argued that for the semiclassical description to hold the introduction of an additional geometric constraint, the distance of closest approach, is required. This constraint implies that the semiclassical description of vortex nucleation by tunneling at a boundary is in general not possible. Geometry dependence of the tunneling volume provides a means to verify experimental observation of vortex quantum tunneling in the superfluid Helium II.Comment: 4 pages, 2 figures, revised version to appear in Phys. Rev.

    Field induced long-range-ordering in an S=1 quasi-one-dimensional Heisenberg antiferromagnet

    Full text link
    We have measured the heat capacity and magnetization of the spin one one-dimensional Heisenberg antiferromagnet NDMAP and constructed a magnetic field versus temperature phase diagram. We found a field induced long-range magnetic ordering. We have been successful in explaining the phase diagram theoretically.Comment: 6 pages, 18 figure
    corecore