53 research outputs found

    Use of submicron vaterite particles serves as an effective delivery vehicle to the respiratory portion of the lung

    Get PDF
    © 2018 Gusliakova, Atochina-Vasserman, Sindeeva, Sindeev, Pinyaev, Pyataev, Revin, Sukhorukov, Gorin and Gow. Nano- and microencapsulation has proven to be a useful technique for the construction of drug delivery vehicles for use in vascular medicine. However, the possibility of using these techniques within the lung as an inhalation delivery mechanism has not been previously considered. A critical element of particle delivery to the lung is the degree of penetrance that can be achieved with respect to the airway tree. In this study we examined the effectiveness of near infrared (NIR) dye (Cy7) labeled calcium carbonate (vaterite) particles of 3.15, 1.35, and 0.65 μm diameter in reaching the respiratory portion of the lung. First of all, it was shown that, interaction vaterite particles and the components of the pulmonary surfactant occurs a very strong retardation of the recrystallization and dissolution of the particles, which can subsequently be used to create systems with a prolonging release of bioactive substances after the particles penetrate the distal sections of the lungs. Submicro- and microparticles, coated with Cy7 labeled albumin as a model compound, were delivered to mouse lungs via tracheostomy with subsequent imaging performed 24, 48, and 72 h after delivery by in vivo fluorescence. 20 min post administration particles of all three sizes were visible in the lung, with the deepest penetrance observed with 0.65 μm particles. In vivo biodistribution was confirmed by fluorescence tomography imaging of excised organs post 72 h. Laser scanning confocal microscopy shows 0.65 μm particles reaching the alveolar space. The delivery of fluorophore to the blood was assessed using Cy7 labeled 0.65 μm particles. Cy7 labeled 0.65 μm particles efficiently delivered fluorescent material to the blood with a peak 3 h after particle administration. The pharmacokinetics of NIR fluorescence dye will be shown. These studies establish that by using 0.65 μm particles loaded with Cy7 we can efficiently access the respiratory portion of the lung, which represents a potentially efficient delivery mechanism for both the lung and the vasculature

    IL-4Rα-Independent Expression of Mannose Receptor and Ym1 by Macrophages Depends on their IL-10 Responsiveness

    Get PDF
    IL-4Rα-dependent responses are essential for granuloma formation and host survival during acute schistosomiasis. Previously, we demonstrated that mice deficient for macrophage-specific IL-4Rα (LysMcreIl4ra−/lox) developed increased hepatotoxicity and gut inflammation; whereas inflammation was restricted to the liver of mice lacking T cell-specific IL-4Rα expression (iLckcreIl4ra−/lox). In the study presented here we further investigated their role in liver granulomatous inflammation. Frequencies and numbers of macrophage, lymphocyte or granulocyte populations, as well as Th1/Th2 cytokine responses were similar in Schistosoma mansoni-infected LysMcreIl4ra−/lox liver granulomas, when compared to Il4ra−/lox control mice. In contrast, a shift to Th1 responses with high IFN-γ and low IL-4, IL-10 and IL-13 was observed in the severely disrupted granulomas of iLckcreIl4ra−/lox and Il4ra−/− mice. As expected, alternative macrophage activation was reduced in both LysMcreIl4ra−/lox and iLckcreIl4ra−/lox granulomas with low arginase 1 and heightened nitric oxide synthase RNA expression in granuloma macrophages of both mouse strains. Interestingly, a discrete subpopulation of SSChighCD11b+I-A/I-EhighCD204+ macrophages retained expression of mannose receptor (MMR) and Ym1 in LysMcreIl4ra−/lox but not in iLckcreIl4ra−/lox granulomas. While aaMφ were in close proximity to the parasite eggs in Il4ra−/lox control mice, MMR+Ym1+ macrophages in LysMcreIl4ra−/lox mice were restricted to the periphery of the granuloma, indicating that they might have different functions. In vivo IL-10 neutralisation resulted in the disappearance of MMR+Ym1+ macrophages in LysMcreIl4ra−/lox mice. Together, these results show that IL-4Rα-responsive T cells are essential to drive alternative macrophage activation and to control granulomatous inflammation in the liver. The data further suggest that in the absence of macrophage-specific IL-4Rα signalling, IL-10 is able to drive mannose receptor- and Ym1-positive macrophages, associated with control of hepatic granulomatous inflammation

    Limited response of NK92 cells to Plasmodium falciparum-infected erythrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mechanisms by which anti-malarial immune responses occur are still not fully clear. Natural killer (NK) cells are thought to play a pivotal role in innate responses against <it>Plasmodium falciparum</it>. In this study, the suitability of NK92 cells as models for the NK mechanisms involved in the immune response against malaria was investigated.</p> <p>Methods</p> <p>NK92 cells were assessed for several signs of activation and cytotoxicity due to contact to parasites and were as well examined by oligonucleotide microarrays for an insight on the impact <it>P. falciparum</it>-infected erythrocytes have on their transcriptome. To address the parasite side of such interaction, growth inhibition assays were performed including non-NK cells as controls.</p> <p>Results</p> <p>By performing microarrays with NK92 cells, the impact of parasites on a transcriptional level was observed. The findings show that, although not evidently activated by iRBCs, NK92 cells show transcriptional signs of priming and proliferation. In addition, decreased parasitaemia was observed due to co-incubation with NK92 cells. However, such effect might not be NK-specific since irrelevant cells also affected parasite growth <it>in vitro</it>.</p> <p>Conclusions</p> <p>Although NK92 cells are here shown to behave as poor models for the NK immune response against parasites, the results obtained in this study may be of use for future investigations regarding host-parasites interactions in malaria.</p

    Pneumocystis murina colonization in immunocompetent surfactant protein A deficient mice following environmental exposure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Pneumocystis spp</it>. are opportunistic pathogens that cause pneumonia in immunocompromised humans and animals. <it>Pneumocystis </it>colonization has also been detected in immunocompetent hosts and may exacerbate other pulmonary diseases. Surfactant protein A (SP-A) is an innate host defense molecule and plays a role in the host response to <it>Pneumocystis</it>.</p> <p>Methods</p> <p>To analyze the role of SP-A in protecting the immunocompetent host from <it>Pneumocystis </it>colonization, the susceptibility of immunocompetent mice deficient in SP-A (KO) and wild-type (WT) mice to <it>P. murina </it>colonization was analyzed by reverse-transcriptase quantitative PCR (qPCR) and serum antibodies were measured by enzyme-linked immunosorbent assay (ELISA).</p> <p>Results</p> <p>Detection of <it>P. murina </it>specific serum antibodies in immunocompetent WT and KO mice indicated that the both strains of mice had been exposed to <it>P. murina </it>within the animal facility. However, P. <it>murina </it>mRNA was only detected by qPCR in the lungs of the KO mice. The incidence and level of the mRNA expression peaked at 8–10 weeks and declined to undetectable levels by 16–18 weeks. When the mice were immunosuppressed, <it>P. murina </it>cyst forms were also only detected in KO mice. <it>P. murina </it>mRNA was detected in <it>SCID </it>mice that had been exposed to KO mice, demonstrating that the immunocompetent KO mice are capable of transmitting the infection to immunodeficient mice. The pulmonary cellular response appeared to be responsible for the clearance of the colonization. More CD4+ and CD8+ T-cells were recovered from the lungs of immunocompetent KO mice than from WT mice, and the colonization in KO mice depleted CD4+ cells was not cleared.</p> <p>Conclusion</p> <p>These data support an important role for SP-A in protecting the immunocompetent host from <it>P. murina </it>colonization, and provide a model to study <it>Pneumocystis </it>colonization acquired via environmental exposure in humans. The results also illustrate the difficulties in keeping mice from exposure to <it>P. murina </it>even when housed under barrier conditions.</p

    The gastrointestinal nematode Trichostrongylus colubriformis down-regulates immune gene expression in migratory cells in afferent lymph

    Get PDF
    Background: Gastrointestinal nematode (GIN) infections are the predominant cause of economic losses in sheep. Infections are controlled almost exclusively by the use of anthelmintics which has lead to the selection of drug resistant nematode strains. An alternative control approach would be the induction of protective immunity to these parasites. This study exploits an ovine microarray biased towards immune genes, an artificially induced immunity model and the use of pseudo-afferent lymphatic cannulation to sample immune cells draining from the intestine, to investigate possible mechanisms involved in the development of immunity.\ud \ud Results: During the development of immunity to, and a subsequent challenge infection with Trichostrongylus colubriformis, the transcript levels of 2603 genes of cells trafficking in afferent intestinal lymph were significantly modulated (P < 0.05). Of these, 188 genes were modulated more than 1.3-fold and involved in immune function. Overall, there was a clear trend for down-regulation of many genes involved in immune functions including antigen presentation, caveolar-mediated endocytosis and protein ubiquitination. The transcript levels of TNF receptor associated factor 5 (TRAF5), hemopexin (HPX), cysteine dioxygenase (CDO1), the major histocompatability complex Class II protein (HLA-DMA), interleukin-18 binding protein (IL-18BP), ephrin A1 (EFNA1) and selenoprotein S (SELS) were modulated to the greatest degree.\ud \ud Conclusions: This report describes gene expression profiles of afferent lymph cells in sheep developing immunity to nematode infection. Results presented show a global down-regulation of the expression of immune genes which may be reflective of the natural temporal response to nematode infections in livestock

    Chitohexaose Activates Macrophages by Alternate Pathway through TLR4 and Blocks Endotoxemia

    Get PDF
    Sepsis is a consequence of systemic bacterial infections leading to hyper activation of immune cells by bacterial products resulting in enhanced release of mediators of inflammation. Endotoxin (LPS) is a major component of the outer membrane of Gram negative bacteria and a critical factor in pathogenesis of sepsis. Development of antagonists that inhibit the storm of inflammatory molecules by blocking Toll like receptors (TLR) has been the main stay of research efforts. We report here that a filarial glycoprotein binds to murine macrophages and human monocytes through TLR4 and activates them through alternate pathway and in the process inhibits LPS mediated classical activation which leads to inflammation associated with endotoxemia. The active component of the nematode glycoprotein mediating alternate activation of macrophages was found to be a carbohydrate residue, Chitohexaose. Murine macrophages and human monocytes up regulated Arginase-1 and released high levels of IL-10 when incubated with chitohexaose. Macrophages of C3H/HeJ mice (non-responsive to LPS) failed to get activated by chitohexaose suggesting that a functional TLR4 is critical for alternate activation of macrophages also. Chitohexaose inhibited LPS induced production of inflammatory molecules TNF-α, IL-1β and IL-6 by macropahges in vitro and in vivo in mice. Intraperitoneal injection of chitohexaose completely protected mice against endotoxemia when challenged with a lethal dose of LPS. Furthermore, Chitohexaose was found to reverse LPS induced endotoxemia in mice even 6/24/48 hrs after its onset. Monocytes of subjects with active filarial infection displayed characteristic alternate activation markers and were refractory to LPS mediated inflammatory activation suggesting an interesting possibility of subjects with filarial infections being less prone to develop of endotoxemia. These observations that innate activation of alternate pathway of macrophages by chtx through TLR4 has offered novel opportunities to cell biologists to study two mutually exclusive activation pathways of macrophages being mediated through a single receptor

    Heterogeneity of Microglial Activation in the Innate Immune Response in the Brain

    Get PDF
    The immune response in the brain has been widely investigated and while many studies have focused on the proinflammatory cytotoxic response, the brain’s innate immune system demonstrates significant heterogeneity. Microglia, like other tissue macrophages, participate in repair and resolution processes after infection or injury to restore normal tissue homeostasis. This review examines the mechanisms that lead to reduction of self-toxicity and to repair and restructuring of the damaged extracellular matrix in the brain. Part of the resolution process involves switching macrophage functional activation to include reduction of proinflammatory mediators, increased production and release of anti-inflammatory cytokines, and production of cytoactive factors involved in repair and reconstruction of the damaged brain. Two partially overlapping and complimentary functional macrophage states have been identified and are called alternative activation and acquired deactivation. The immunosuppressive and repair processes of each of these states and how alternative activation and acquired deactivation participate in chronic neuroinflammation in the brain are discussed

    Use of submicron vaterite particles serves as an effective delivery vehicle to the respiratory portion of the lung

    No full text
    © 2018 Gusliakova, Atochina-Vasserman, Sindeeva, Sindeev, Pinyaev, Pyataev, Revin, Sukhorukov, Gorin and Gow. Nano- and microencapsulation has proven to be a useful technique for the construction of drug delivery vehicles for use in vascular medicine. However, the possibility of using these techniques within the lung as an inhalation delivery mechanism has not been previously considered. A critical element of particle delivery to the lung is the degree of penetrance that can be achieved with respect to the airway tree. In this study we examined the effectiveness of near infrared (NIR) dye (Cy7) labeled calcium carbonate (vaterite) particles of 3.15, 1.35, and 0.65 μm diameter in reaching the respiratory portion of the lung. First of all, it was shown that, interaction vaterite particles and the components of the pulmonary surfactant occurs a very strong retardation of the recrystallization and dissolution of the particles, which can subsequently be used to create systems with a prolonging release of bioactive substances after the particles penetrate the distal sections of the lungs. Submicro- and microparticles, coated with Cy7 labeled albumin as a model compound, were delivered to mouse lungs via tracheostomy with subsequent imaging performed 24, 48, and 72 h after delivery by in vivo fluorescence. 20 min post administration particles of all three sizes were visible in the lung, with the deepest penetrance observed with 0.65 μm particles. In vivo biodistribution was confirmed by fluorescence tomography imaging of excised organs post 72 h. Laser scanning confocal microscopy shows 0.65 μm particles reaching the alveolar space. The delivery of fluorophore to the blood was assessed using Cy7 labeled 0.65 μm particles. Cy7 labeled 0.65 μm particles efficiently delivered fluorescent material to the blood with a peak 3 h after particle administration. The pharmacokinetics of NIR fluorescence dye will be shown. These studies establish that by using 0.65 μm particles loaded with Cy7 we can efficiently access the respiratory portion of the lung, which represents a potentially efficient delivery mechanism for both the lung and the vasculature
    corecore