21 research outputs found

    Cell fusions in mammals

    Get PDF
    Cell fusions are important to fertilization, placentation, development of skeletal muscle and bone, calcium homeostasis and the immune defense system. Additionally, cell fusions participate in tissue repair and may be important to cancer development and progression. A large number of factors appear to regulate cell fusions, including receptors and ligands, membrane domain organizing proteins, proteases, signaling molecules and fusogenic proteins forming alpha-helical bundles that bring membranes close together. The syncytin family of proteins represent true fusogens and the founding member, syncytin-1, has been documented to be involved in fusions between placental trophoblasts, between cancer cells and between cancer cells and host cells. We review the literature with emphasis on the syncytin family and propose that syncytins may represent universal fusogens in primates and rodents, which work together with a number of other proteins to regulate the cell fusion machinery

    La ejecución de los arcos del puente de concreto armado sobre el Río Bueno

    No full text

    La ejecución de los arcos del puente de concreto armado sobre el Río Bueno

    No full text

    Three-dimensional hydraulic characterisation of the Arno River in Florence

    Get PDF
    Rivers in historical cities, such as the Arno River in Florence, are typically characterised by unique complex-shaped hydraulic structures (such as bridges and weirs). The flow interaction with these structures can lead to a fully 3D flow field which cannot be properly investigated with commonly employed 1D, and even 2D, hydraulic models. Nowadays, 3D computational fluid dynamics (CFD) tools can be successfully used in river management context. Florence is characterised by a high risk of flooding and the disastrous consequences of such events being greatly increased due to its inestimable artistic heritage. The main cause of flooding is the limited hydraulic conveyance capacity of the Arno River in Florence due to several complex hydraulic structures along the reach. The present work represents the first 3D hydraulic model of the Arno River in the urban reach of Florence. The geometric model was created using the 3D bed topography of the river surveyed in 2015. The hydraulic model was calibrated and validated using discharge and water stage field data measured in 2016. The 3D model can be used as a more realistic tool for exploring mitigation solutions for the reduction of hydraulic risk
    corecore