9 research outputs found

    Protective Role of False Tendon in Subjects with Left Bundle Branch Block: A Virtual Population Study.

    Get PDF
    False tendons (FTs) are fibrous or fibromuscular bands that can be found in both the normal and abnormal human heart in various anatomical forms depending on their attachment points, tissue types, and geometrical properties. While FTs are widely considered to affect the function of the heart, their specific roles remain largely unclear and unexplored. In this paper, we present an in silico study of the ventricular activation time of the human heart in the presence of FTs. This study presents the first computational model of the human heart that includes a FT, Purkinje network, and papillary muscles. Based on this model, we perform simulations to investigate the effect of different types of FTs on hearts with the electrical conduction abnormality of a left bundle branch block (LBBB). We employ a virtual population of 70 human hearts derived from a statistical atlas, and run a total of 560 simulations to assess ventricular activation time with different FT configurations. The obtained results indicate that, in the presence of a LBBB, the FT reduces the total activation time that is abnormally augmented due to a branch block, to such an extent that surgical implant of cardiac resynchronisation devices might not be recommended by international guidelines. Specifically, the simulation results show that FTs reduce the QRS duration at least 10 ms in 80% of hearts, and up to 45 ms for FTs connecting to the ventricular free wall, suggesting a significant reduction of cardiovascular mortality risk. In further simulation studies we show the reduction in the QRS duration is more sensitive to the shape of the heart then the size of the heart or the exact location of the FT. Finally, the model suggests that FTs may contribute to reducing the activation time difference between the left and right ventricles from 12 ms to 4 ms. We conclude that FTs may provide an alternative conduction pathway that compensates for the propagation delay caused by the LBBB. Further investigation is needed to quantify the clinical impact of FTs on cardiovascular mortality risk

    Mechanisms responsible for increased circulating levels of galectin-3 in cardiomyopathy and heart failure

    Get PDF
    Galectin-3 is a biomarker of heart disease. However, it remains unknown whether increase in galectin-3 levels is dependent on aetiology or disease-associated conditions and whether diseased heart releases galectin-3 into the circulation. We explored these questions in mouse models of heart disease and in patients with cardiomyopathy. All mouse models (dilated cardiomyopathy, DCM; fibrotic cardiomyopathy, ischemia-reperfusion, I/R; treatment with β-adrenergic agonist isoproterenol) showed multi-fold increases in cardiac galectin-3 expression and preserved renal function. In mice with fibrotic cardiomyopathy, I/R or isoproterenol treatment, plasma galectin-3 levels and density of cardiac inflammatory cells were elevated. These models also exhibited parallel changes in cardiac and plasma galectin-3 levels and presence of trans-cardiac galectin-3 gradient, indicating cardiac release of galectin-3. DCM mice showed no change in circulating galectin-3 levels nor trans-cardiac galectin-3 gradient or myocardial inflammatory infiltration despite a 50-fold increase in cardiac galectin-3 content. In patients with hypertrophic cardiomyopathy or DCM, plasma galectin-3 increased only in those with renal dysfunction and a trans-cardiac galectin-3 gradient was not present. Collectively, this study documents the aetiology-dependency and diverse mechanisms of increment in circulating galectin-3 levels. Our findings highlight cardiac inflammation and enhanced β-adrenoceptor activation in mediating elevated galectin-3 levels via cardiac release in the mechanism

    The Predictive Role for ST2 in Patients with Acute Coronary Syndromes and Heart Failure

    No full text
    corecore