185 research outputs found

    New aesthetic, new anxieties

    Get PDF
    The New Aesthetic was a design concept and netculture phenomenon launched into the world by London designer James Bridle in 2011. It continues to attract the attention of media art, and throw up associations to a variety of situated practices, including speculative design, net criticism, hacking, free and open source software development, locative media, sustainable hardware and so on. In this book we consider the New Aesthetic: as an opportunity to rethink the relations between these contexts in the emergent episteme of computationality. There is a desperate need to confront the political pressures of neoliberalism manifested in these infrastructures. Indeed, these are risky, dangerous and problematic times; a period when critique should thrive. But here we need to forge new alliances, invent and discover problems of the common that nevertheless do not eliminate the fundamental differences in this ecology of practices. In this book, perhaps provocatively, we believe a great deal could be learned from the development of the New Aesthetic not only as a mood, but as a topic and fix for collective feeling, that temporarily mobilizes networks. Is it possible to sustain and capture these atmospheres of debate and discussion beyond knee-jerk reactions and opportunistic self-promotion? These are crucial questions that the New Aesthetic invites us to consider, if only to keep a critical network culture in place

    Functional degradable polymers by radical ring-opening copolymerization of MDO and vinyl bromobutanoate : synthesis, degradability and post-polymerization modification

    Get PDF
    The synthesis of vinyl bromobutanoate (VBr), a new vinyl acetate monomer derivative obtained by the palladium-catalyzed vinyl exchange reaction between vinyl acetate (VAc) and 4-bromobutyric acid is reported. The homopolymerization of this new monomer using the RAFT/MADIX polymerization technique leads to the formation of novel well-defined and controlled polymers containing pendent bromine functional groups able to be modified via postpolymerization modification. Furthermore, the copolymerization of vinyl bromobutanoate with 2-methylene-1,3-dioxepane (MDO) was also performed to deliver a range of novel functional degradable copolymers, poly(MDO-co-VBr). The copolymer composition was shown to be able to be tuned to vary the amount of ester repeat units in the polymer backbone, and hence determine the degradability, while maintaining a control of the final copolymers’ molar masses. The addition of functionalities via simple postpolymerization modifications such as azidation and the 1,3-dipolar cycloaddition of a PEG alkyne to an azide is also reported and proven by 1H NMR spectroscopy, FTIR spectroscopy, and SEC analyses. These studies enable the formation of a novel class of hydrophilic functional degradable copolymers using versatile radical polymerization methods

    Shape effect of glyco-nanoparticles on macrophage cellular uptake and immune response

    Get PDF
    The shells of various poly(dl-lactide)-b-poly(acrylic acid) (PDLLA-b-PAA) spherical micelles and poly(l-lactide)-b-poly(acrylic acid) (PLLA-b-PAA) cylindrical micelles were functionalized with mannose to yield glyco-nanoparticles (GNPs) with different shapes and dimensions. All of these GNPs were shown to have good biocompatibility (up to 1 mg/mL). Cellular uptake experiments using RAW 264.7 have shown that the spherical GNPs were internalized to a much greater extent than the cylindrical GNPs and such a phenomenon was attributed to their different endocytosis pathways. It was demonstrated that spherical GNPs were internalized based on clathrin- and caveolin-mediated endocytosis while cylindrical GNPs mainly depended on clathrin-mediated endocytosis. We also found that longer cylindrical GNPs (Ln × Wn = 215 × 47 nm) can induce an inflammatory response (specifically interleukin 6) more efficiently than shorter cylindrical GNPs (Ln × Wn = 99 × 50 nm) and spherical GNPs (Dn = 46 nm)

    Permeable protein-loaded polymersome cascade nanoreactors by polymerization-induced self-assembly

    Get PDF
    Enzyme loading of polymersomes requires permeability to enable them to interact with the external environment, typically requiring addition of complex functionality to enable porosity. Herein, we describe a synthetic route toward intrinsically permeable polymersomes loaded with functional proteins using initiator-free visible light-mediated polymerization-induced self-assembly (photo-PISA) under mild, aqueous conditions using a commercial monomer. Compartmentalization and retention of protein functionality was demonstrated using green fluorescent protein as a macromolecular chromophore. Catalytic enzyme-loaded vesicles using horseradish peroxidase and glucose oxidase were also prepared and the permeability of the membrane toward their small molecule substrates was revealed for the first time. Finally, the interaction of the compartmentalized enzymes between separate vesicles was validated by means of an enzymatic cascade reaction. These findings have a broad scope as the methodology could be applied for the encapsulation of a large range of macromolecules for advancements in the fields of nanotechnology, biomimicry, and nanomedicine

    Self-assembly of temperature-responsive protein–polymer bioconjugates

    Get PDF
    We report a simple temperature-responsive bioconjugate system comprising superfolder green fluorescent protein (sfGFP) decorated with poly[(oligo ethylene glycol) methyl ether methacrylate] (PEGMA) polymers. We used amber suppression to site-specifically incorporate the non-canonical azide-functional amino acid p-azidophenylalanine (pAzF) into sfGFP at different positions. The azide moiety on modified sfGFP was then coupled using copper-catalyzed “click” chemistry with the alkyne terminus of a PEGMA synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. The protein in the resulting bioconjugate was found to remain functionally active (i.e., fluorescent) after conjugation. Turbidity measurements revealed that the point of attachment of the polymer onto the protein scaffold has an impact on the thermoresponsive behavior of the resultant bioconjugate. Furthermore, small-angle X-ray scattering analysis showed the wrapping of the polymer around the protein in a temperature-dependent fashion. Our work demonstrates that standard genetic manipulation combined with an expanded genetic code provides an easy way to construct functional hybrid biomaterials where the location of the conjugation site on the protein plays an important role in determining material properties. We anticipate that our approach could be generalized for the synthesis of complex functional materials with precisely defined domain orientation, connectivity, and composition

    Controlling the size of two-dimensional polymer platelets for water-in-water emulsifiers

    Get PDF
    A wide range of biorelevant applications, partic- ularly in pharmaceutical formulations and the food and cosmetic industries, require the stabilization of two water-soluble blended components which would otherwise form incompatible biphasic mixtures. Such water-in-water emulsions can be achieved using Pickering stabilization, where two-dimensional (2D) nanomateri- als are particularly effective due to their high surface area. However, control over the shape and size of the 2D nanomaterials is challenging, where it has not yet been possible to examine chemically identical nanostructures with the same thickness but different surface areas to probe the size-effect on emulsion stabilization ability. Hence, the rationale design and realization of the full potential of Pickering water-in-water emulsion stabilization have not yet been achieved. Herein, we report for the first time 2D poly(lactide) platelets with tunable sizes (with varying coronal chemistry) and of uniform shape using a crystallization-driven self-assembly methodology. We have used this series of nanostructures to explore the effect of 2D platelet size and chemistry on the stabilization of a water-in-water emulsion of a poly(ethylene glycol) (PEG)/dextran mixture. We have demonstrated that cationic, zwitterionic, and neutral large platelets (ca. 3.7 × 10 6 nm 2 ) all attain smaller droplet sizes and more stable emulsions than their respective smaller platelets (ca. 1.2 × 105 nm 2 ). This series of 2D platelets of controlled dimensions provides an excellent exemplar system for the investigation of the effect of just the surface area on the potential effectiveness in a particular applicationPostprint (published version

    FossilSim:An r package for simulating fossil occurrence data under mechanistic models of preservation and recovery

    Get PDF
    1.Key features of the fossil record that present challenges for integrating palaeontological and phylogenetic datasets include (i) non‐uniform fossil recovery, (ii) stratigraphic age uncertainty and (iii) inconsistencies in the definition of species origination and taxonomy. 2.We present an r package FossilSim that can be used to simulate and visualise fossil data for phylogenetic analysis under a range of flexible models. The package includes interval‐, environment‐ and lineage‐dependent models of fossil recovery that can be combined with models of stratigraphic age uncertainty and species evolution. 3.The package input and output can be used in combination with the wide range of existing phylogenetic and palaeontological r packages. We also provide functions for converting between FossilSim and paleotree objects. 4. Simulated datasets provide enormous potential to assess the performance of phylogenetic methods and to explore the impact of using fossil occurrence databases on parameter estimation in macroevolution.ISSN:2041-210XISSN:2041-209
    corecore