16 research outputs found

    Energy transitions and uncertainty: creating low carbon investment opportunities in the UK electricity sector

    Get PDF
    This paper examines how actors in the UK electricity sector are attempting to deliver investment in low carbon generation. Low carbon technologies, because of their relative immaturity, capital intensity and low operational costs, do not readily fit with existing electricity markets and investment templates which were designed for fossil fuel based energy. We analyse key electricity market and infrastructure policies in the UK and highlight how these are aimed at making low carbon technologies ‘investable’ by reducing uncertainty, managing investment risks and repositioning actors within the electricity socio-technical ‘regime’. We argue that our study can inform contemporary debates on the politics and governance of sustainability transitions by empirically investigating the agency of incumbent regime actors in the face of uncertainty and by offering critical insights on the role of markets and finance in shaping socio-technical change

    Long-read metagenomics of soil communities reveals phylum-specific secondary metabolite dynamics

    Get PDF
    Microbial biosynthetic gene clusters (BGCs) encoding secondary metabolites are thought to impact a plethora of biologically mediated environmental processes, yet their discovery and functional characterization in natural microbiomes remains challenging. Here we describe deep long-read sequencing and assembly of metagenomes from biological soil crusts, a group of soil communities that are rich in BGCs. Taking advantage of the unusually long assemblies produced by this approach, we recovered nearly 3,000 BGCs for analysis, including 712 full-length BGCs. Functional exploration through metatranscriptome analysis of a 3-day wetting experiment uncovered phylum-specific BGC expression upon activation from dormancy, elucidating distinct roles and complex phylogenetic and temporal dynamics in wetting processes. For example, a pronounced increase in BGC transcription occurs at night primarily in cyanobacteria, implicating BGCs in nutrient scavenging roles and niche competition. Taken together, our results demonstrate that long-read metagenomic sequencing combined with metatranscriptomic analysis provides a direct view into the functional dynamics of BGCs in environmental processes and suggests a central role of secondary metabolites in maintaining phylogenetically conserved niches within biocrusts.Supplementary Data 1 : Description: Raw metagenome and metatranscriptome statistics.Supplementary Data 2 : Description: Assembly statistics of short- and long-read metagenomes as well as metatranscriptomes.Supplementary Data 3 : Description: Each biosynthetic gene cluster identified from the assembled metagenomes in this study.Supplementary Data 4 : Description: Each biosynthetic gene cluster identified in the metatranscriptomic assemblies.Supplementary Data 5 : Description: The genes used to calculate transcription of biosynthetic gene clusters and core bacterial genes.Supplementary Data 6 : Description: DESeq2 analysis of significantly transcribed genes between day and night-time transcription.Supplementary Data 7 : Description: Transcriptional scores for cation-related genes.Supplementary Data 8 : Description: Average abundance pattern for each phylum through time.Supplementary Data 9 : Description: Taxonomic composition of metagenomes and metatranscriptomes using fulllength 16S rRNA.Supplementary Data 10 : Description: Normalized sequence data showing scores of transcription at each time point with BGC type and Phylum shownThis work was partially supported by funds provided by the Office of Science Early Career Research Program Office of Biological and Environmental Research, of the U.S. Department of Energy and by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory. We also wish to acknowledge Simon Roux, Emiley Eloe-Fadrosh and Eoin Brodie for their constructive feedback.https://www.nature.com/commsbioam2022BiochemistryGeneticsMicrobiology and Plant Patholog

    Expansin Message Regulation in Parasitic Angiosperms: Marking Time in Development

    No full text

    Expression and regulatory asymmetry of retained Arabidopsis thaliana transcription factor genes derived from whole genome duplication

    No full text
    Abstract Background Transcription factors (TFs) play a key role in regulating plant development and response to environmental stimuli. While most genes revert to single copy after whole genome duplication (WGD) event, transcription factors are retained at a significantly higher rate. Little is known about how TF duplicates have diverged in their expression and regulation, the answer to which may contribute to a better understanding of the elevated retention rate among TFs. Results Here we assessed what features may explain differences in the retention of TF duplicates and other genes using Arabidopsis thaliana as a model. We integrated 34 expression, sequence, and conservation features to build a linear model for predicting the extent of duplicate retention following WGD events among TFs and 19 groups of genes with other functions. We found that TFs was the least well predicted, demonstrating the features of TFs are substantially deviated from duplicate genes in other function groups. Consistent with this, the evolution of TF expression patterns and cis-regulatory cites favors the partitioning of ancestral states among the resulting duplicates: one “ancestral” TF duplicate retains most ancestral expression and cis-regulatory sites, while the “non-ancestral” duplicate is enriched for novel regulatory sites. By modeling the retention of ancestral expression and cis-regulatory states in duplicate pairs using a system of differential equations, we found that TF duplicate pairs in a partitioned state are preferentially maintained. Conclusions These TF duplicates with asymmetrically partitioned ancestral states are likely maintained because one copy retains ancestral functions while the other, at least in some cases, acquires novel cis-regulatory sites that may be important for novel, adaptive traits

    The Arabidopsis Auxin Receptor F-Box Proteins AFB4 and AFB5 Are Required for Response to the Synthetic Auxin Picloram

    No full text
    The plant hormone auxin is perceived by a family of F-box proteins called the TIR1/AFBs. Phylogenetic studies reveal that these proteins fall into four clades in flowering plants called TIR1, AFB2, AFB4, and AFB6. Genetic studies indicate that members of the TIR1 and AFB2 groups act as positive regulators of auxin signaling by promoting the degradation of the Aux/IAA transcriptional repressors. In this report, we demonstrate that both AFB4 and AFB5 also function as auxin receptors based on in vitro assays. We also provide genetic evidence that AFB4 and AFB5 are targets of the picloram family of auxinic herbicides in addition to indole-3-acetic acid. In contrast to previous studies we find that null afb4 alleles do not exhibit obvious defects in seedling morphology or auxin hypersensitivity. We conclude that AFB4 and AFB5 act in a similar fashion to other members of the family but exhibit a distinct auxin specificity

    The Arabidopsis

    No full text
    The plant hormone auxin is perceived by a family of F-box proteins called the TIR1/AFBs. Phylogenetic studies reveal that these proteins fall into four clades in flowering plants called TIR1, AFB2, AFB4, and AFB6. Genetic studies indicate that members of the TIR1 and AFB2 groups act as positive regulators of auxin signaling by promoting the degradation of the Aux/IAA transcriptional repressors. In this report, we demonstrate that both AFB4 and AFB5 also function as auxin receptors based on in vitro assays. We also provide genetic evidence that AFB4 and AFB5 are targets of the picloram family of auxinic herbicides in addition to indole-3-acetic acid. In contrast to previous studies we find that null afb4 alleles do not exhibit obvious defects in seedling morphology or auxin hypersensitivity. We conclude that AFB4 and AFB5 act in a similar fashion to other members of the family but exhibit a distinct auxin specificity

    High-Throughput Single-Cell Transcriptome Profiling of Plant Cell Types

    No full text
    Summary: Single-cell transcriptome profiling of heterogeneous tissues can provide high-resolution windows into developmental dynamics and environmental responses, but its application to plants has been limited. Here, we used the high-throughput Drop-seq approach to profile >12,000 cells from Arabidopsis roots. This identified numerous distinct cell types, covering all major root tissues and developmental stages, and illuminated specific marker genes for these populations. In addition, we demonstrate the utility of this approach to study the impact of environmental conditions on developmental processes. Analysis of roots grown with or without sucrose supplementation uncovers changes in the relative frequencies of cell types in response to sucrose. Finally, we characterize the transcriptome changes that occur across endodermis development and identify nearly 800 genes with dynamic expression as this tissue differentiates. Collectively, we demonstrate that single-cell RNA-seq can be used to profile developmental processes in plants and show how they can be altered by external stimuli. : The application of single-cell transcriptome profiling to plants has been limited. Shulse et al. performed Drop-seq on Arabidopsis roots, generating a transcriptional resource for >12,000 cells across major populations. This revealed marker genes for distinct cell types, cell frequency changes resulting from sucrose addition, and genes dynamically regulated during development. Keywords: single-cell RNA-seq, plant, root, Arabidopsis, transcriptomics, endodermis, development, sucros

    Genome of Paspalum vaginatum and the role of trehalose mediated autophagy in increasing maize biomass

    No full text
    A number of crop wild relatives can tolerate extreme stress to a degree outside the range observed in their domesticated relatives. However, it is unclear whether or how the molecular mechanisms employed by these species can be translated to domesticated crops. Paspalum (Paspalum vaginatum) is a self-incompatible and multiply stress-tolerant wild relative of maize and sorghum. Here, we describe the sequencing and pseudomolecule level assembly of a vegetatively propagated accession of P. vaginatum. Phylogenetic analysis based on 6,151 single-copy syntenic orthologues conserved in 6 related grass species places paspalum as an outgroup of the maize-sorghum clade. In parallel metabolic experiments, paspalum, but neither maize nor sorghum, exhibits a significant increase in trehalose when grown under nutrient-deficit conditions. Inducing trehalose accumulation in maize, imitating the metabolic phenotype of paspalum, results in autophagy dependent increases in biomass accumulation
    corecore