8 research outputs found

    Mortality after admission for acute myocardial infarction in Aboriginal and non-Aboriginal people in New South Wales, Australia: a multilevel data linkage study

    Get PDF
    Background - Heart disease is a leading cause of the gap in burden of disease between Aboriginal and non-Aboriginal Australians. Our study investigated short- and long-term mortality after admission for Aboriginal and non-Aboriginal people admitted with acute myocardial infarction (AMI) to public hospitals in New South Wales, Australia, and examined the impact of the hospital of admission on outcomes. Methods - Admission records were linked to mortality records for 60047 patients aged 25–84 years admitted with a diagnosis of AMI between July 2001 and December 2008. Multilevel logistic regression was used to estimate adjusted odds ratios (AOR) for 30- and 365-day all-cause mortality. Results - Aboriginal patients admitted with an AMI were younger than non-Aboriginal patients, and more likely to be admitted to lower volume, remote hospitals without on-site angiography. Adjusting for age, sex, year and hospital, Aboriginal patients had a similar 30-day mortality risk to non-Aboriginal patients (AOR: 1.07; 95% CI 0.83-1.37) but a higher risk of dying within 365 days (AOR: 1.34; 95% CI 1.10-1.63). The latter difference did not persist after adjustment for comorbid conditions (AOR: 1.12; 95% CI 0.91-1.38). Patients admitted to more remote hospitals, those with lower patient volume and those without on-site angiography had increased risk of short and long-term mortality regardless of Aboriginal status. Conclusions - Improving access to larger hospitals and those with specialist cardiac facilities could improve outcomes following AMI for all patients. However, major efforts to boost primary and secondary prevention of AMI are required to reduce the mortality gap between Aboriginal and non-Aboriginal people

    4D quantitative coronary artery motion analysis : a novel method for culprit lesion prediction

    No full text
    This study aims to determine if measuring four-dimensional quantitative coronary artery motion (QCAM) and change in tortuosity (∆T) on invasive biplane coronary angiogram is predictive of the location of culprit lesions responsible for myocardial infarctions. Invasive coronary angiograms have no current clinical application for the prediction of future coronary events. Previous studies have shown promise in demonstrating the effects of coronary artery motion on plaque formation and location, but this has yet to fully translate into a directed diagnostic method. QCAM and ΔT were calculated with CAAS QCA4D prototype software (Pie Medical Imaging, the Netherlands) for sections of the culprit coronary artery using biplane coronary angiograms of fourteen patients undergoing percutaneous coronary intervention for myocardial infarction. Prediction of the artery section containing the culprit lesion was performed using one sample t-testing, generalised linear latent and mixed statistical modelling with grouping by patient, and logistic regression modelling. QCAM was a significant predictor of the location of culprit lesions (p = 0.047). ΔT was not a significant predictor of the location of culprit lesions (p=0.49). QCAM has a role in predicting the location of culprit lesions, and may allow for targeted local therapy to prevent future events

    On the “Zero of Potential of the Electric Field Produced by the Heart Beat”. A Machine Capable of Estimating this Underlying Persistent Error in Electrocardiography

    No full text
    Modern electrocardiography (ECG) uses a constructed reference potential for the majority of leads. This reference potential, named after its inventor as the Wilson central terminal, is assumed to have negligible value and to be stationary during the cardiac cycle. However, the problem of its variability during the cardiac cycle has been known almost since the inception of 12-lead electrocardiography. Due to the cumbersomeness of the measurement system required to fully appreciate these variations, this topic has received scant research attention during the last 60 years. Taking advantage of modern electronic amplifiers’ capability to detect small voltages, drawing only femtoamperes from physiological equivalent signal sources and of the right-leg connection availability, we developed a complete electrocardiography device that, aside from the eight independent signals of the standard 12-lead ECG, allows direct recording of the Wilson central terminal components. In this paper, we present details of the circuit together with its initial clinical evaluation. For this trial, we recorded data from 44 volunteer patients at Campbelltown Hospital (Campbelltown, Australia) and we found that the Wilson central terminal amplitude, as foreseen by Frank and others in the 1950s, is not negligible, its amplitude in relation to the lead II is, on average, 51.2%, and thus it may be clinically relevan

    On the Einthoven Triangle: A Critical Analysis of the Single Rotating Dipole Hypothesis

    No full text
    Since its inception, electrocardiography has been based on the simplifying hypothesis that cardinal limb leads form an equilateral triangle of which, at the center/centroid, the electrical equivalent of the cardiac activity rotates during the cardiac cycle. Therefore, it is thought that the three limbs (right arm, left arm, and left leg) which enclose the heart into a circuit, where each branch directly implies current circulation through the heart, can be averaged together to form a stationary reference (central terminal) for precordials/chest-leads. Our hypothesis is that cardinal limbs do not form a triangle for the majority of the duration of the cardiac cycle. As a corollary, the central point may not lie in the plane identified by the limb leads. Using a simple and efficient algorithm, we demonstrate that the portion of the cardiac cycle where the three limb leads form a triangle is, on average less, than 50%

    Minimization of the Wilson’s Central Terminal voltage potential via a genetic algorithm

    No full text
    Abstract Objective The Wilson Central Terminal (WCT) is an artificially constructed reference for surface electrocardiography, which is assumed to be near zero and steady during the cardiac cycle; namely it is the simple average of the three recorded limbs (right arm, left arm and left leg) composing the Einthoven triangle and considered to be electrically equidistant from the electrical center of the heart. This assumption has been challenged and disproved in 1954 with an experiment designed just to measure and minimize WCT. Minimization was attempted varying in real time the weight resistors connected to the limbs. Unfortunately, the experiment required a very cumbersome setup and showed that WCT amplitude could not be universally minimized, in other words, the weight resistors change for each person. Taking advantage of modern computation techniques as well as of a special ECG device that aside of the standard 12-lead Electrocardiogram (ECG) can measure WCT components, we propose a software minimization (genetic algorithm) method using data recorded from 72 volunteers. Result We show that while the WCT presents average amplitude relative to lead II of 58.85% (standard deviation of 30.84%), our minimization method yields an amplitude as small as 7.45% of lead II (standard deviation of 9.04%)

    High rate of persistent symptoms up to 4 months after community and hospital-managed SARS-CoV-2 infection

    Get PDF
    Recovery after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains uncertain. A considerable proportion of patients experience persistent symptoms after SARS-CoV-2 infection which impacts health-related quality of life and physical function
    corecore