35 research outputs found
Advancing sustainable malting practices: Aquaporins as potential breeding targets for improved water uptake during controlled germination of barley (hordeum vulgare l.)
The conversion of raw barley (Hordeum vulgare L.) to malt requires a process of controlled germination, where the grain is submerged in water to raise the moisture content to \u3e 40%. The transmembrane proteins, aquaporins, influence water uptake during the initial stage of controlled germination, yet little is known of their involvement in malting. With the current focus on sustainability, understanding the mechanisms of water uptake and usage during the initial stages of malting has become vital in improving efficient malting practices. In this study, we used quantitative proteomics analysis of two malting barley genotypes demonstrating differing water-uptake phenotypes in the initial stages of malting. Our study quantified 19 transmembrane proteins from nine families, including seven distinct aquaporin isoforms, including the plasma intrinsic proteins (PIPs) PIP1;1, PIP2;1, and PIP2;4 and the tonoplast intrinsic proteins (TIPs) TIP1;1, TIP2;3, TIP3;1, and TIP3;2. Our findings suggest that the presence of TIP1;1, TIP3;1, and TIP3;2 in the mature barley grain proteome is essential for facilitating water uptake, influencing cell turgor and the formation of large central lytic vacuoles aiding storage reserve hydrolysis and endosperm modification efficiency. This study proposes that TIP3s mediate water uptake in malting barley grain, offering potential breeding targets for improving sustainable malting practices
Cognition in chronic kidney disease: a systematic review and meta-analysis
Background Cognitive impairment is common in people with chronic kidney disease (CKD) and associated with increased morbidity and mortality. Subtle changes can impact engagement with healthcare, comprehension, decision-making, and medication adherence. We aimed to systematically summarise evidence of cognitive changes in CKD. Methods We searched MEDLINE (March 2016) for cross-sectional, cohort or randomised studies that measured cognitive function in people with CKD (PROSPERO, registration number CRD42014015226). The CKD population included people with eGFR < 60 mL/min/1.73 m2, not receiving renal replacement therapy, in any research setting. We conducted a meta-analysis using random effects, expressed as standardised mean differences (SMD) with 95% confidence intervals (CI). Outcomes were performance in eight cognitive domains. Bias was assessed with the Newcastle-Ottawa Scale (NOS). Results We identified 44 studies reporting sufficient data for synthesis (51,575 participants). Mean NOS score for cohort studies was 5.8/9 and for cross-sectional 5.4/10. Studies were deficient in NOS outcome and selection due to poor methods reporting and in comparison group validity of demographics and chronic disease status. CKD patients (eGFR < 60 mL/min/1.73 m2) performed worse than control groups (eGFR ≥ 60 mL/min/1.73 m2) on Orientation & Attention (SMD –0.79, 95% CI, –1.44 to –0.13), Language (SMD –0.63, 95% CI, –0.85 to –0.41), Concept Formation & Reasoning (SMD –0.63, 95% CI, –1.07 to –0.18), Executive Function (SMD –0.53, 95% CI, –0.85 to –0.21), Memory (SMD –0.48, 95% CI, –0.79 to –0.18), and Global Cognition (SMD –0.48, 95% CI, –0.72 to –0.24). Construction & Motor Praxis and Perception were unaffected (SMD –0.29, 95% CI, –0.90 to 0.32; SMD –1.12, 95% CI, –4.35 to 2.12). Language scores dropped with eGFR (<45 mL/min/1.73 m2 SMD –0.86, 95% CI, –1.25 to –46; 30 mL/min/1.73 m2 SMD –1.56, 95% CI, –2.27 to –0.84). Differences in Orientation & Attention were greatest at eGFR < 45 mL/min/1.73 m2 (SMD –4.62, 95% CI, –4.68 to –4.55). Concept Formation & Reasoning differences were greatest at eGFR < 45 mL/min/1.73 m2 (SMD –4.27, 95% CI, –4.23 to –4.27). Differences in Executive Functions were greatest at eGFR < 30 mL/min/1.73 m2 (SMD –0.54, 95% CI, –1.00 to –0.08). Conclusions Cognitive changes occur early in CKD, and skills decline at different rates. Orientation & Attention and Language are particularly affected. The cognitive impact of CKD is likely to diminish patients’ capacity to engage with healthcare decisions. An individual’s cognitive trajectory may deviate from average
Resveratrol: A Multifunctional Compound Improving Endothelial Function: Editorial to: “Resveratrol Supplementation Gender Independently Improves Endothelial Reactivity and Suppresses Superoxide Production in Healthy Rats” by S. Soylemez et al.
The red wine polyphenol resveratrol boosts endothelium-dependent and -independent vasorelaxations. The improvement of endothelial function by resveratrol is largely attributable to nitric oxide (NO) derived from endothelial NO synthase (eNOS). By stimulating eNOS expression, eNOS phosphorylation and eNOS deacetylation, resveratrol enhances endothelial NO production. By upregulating antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) and suppressing the expression and activity of NADPH oxidases, resveratrol inhibits superoxide-mediated NO inactivation. Some resveratrol effects are mediated by sirtuin 1 (SIRT1) or estrogen receptors, respectively
Importance of investigating epigenetic alterations for industry and regulators: An appraisal of current efforts by the Health and Environmental Sciences Institute
AbstractRecent technological advances have led to rapid progress in the characterization of epigenetic modifications that control gene expression in a generally heritable way, and are likely involved in defining cellular phenotypes, developmental stages and disease status from one generation to the next. On November 18, 2013, the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) held a symposium entitled “Advances in Assessing Adverse Epigenetic Effects of Drugs and Chemicals” in Washington, D.C. The goal of the symposium was to identify gaps in knowledge and highlight promising areas of progress that represent opportunities to utilize epigenomic profiling for risk assessment of drugs and chemicals. Epigenomic profiling has the potential to provide mechanistic information in toxicological safety assessments; this is especially relevant for the evaluation of carcinogenic or teratogenic potential and also for drugs that directly target epigenetic modifiers, like DNA methyltransferases or histone modifying enzymes. Furthermore, it can serve as an endpoint or marker for hazard characterization in chemical safety assessment. The assessment of epigenetic effects may also be approached with new model systems that could directly assess transgenerational effects or potentially sensitive stem cell populations. These would enhance the range of safety assessment tools for evaluating xenobiotics that perturb the epigenome. Here we provide a brief synopsis of the symposium, update findings since that time and then highlight potential directions for future collaborative efforts to incorporate epigenetic profiling into risk assessment
Sex-specific pathways in early cardiac response to pressure overload in mice
Pressure overload (PO) first causes cardiac hypertrophy and then heart failure (HF), which are associated with sex differences in cardiac morphology and function. We aimed to identify genes that may cause HF-related sex differences. We used a transverse aortic constriction (TAC) mouse model leading to hypertrophy without sex differences in cardiac function after 2 weeks, but with sex differences in hypertrophy 6 and 9 weeks after TAC. Cardiac gene expression was analyzed 2 weeks after surgery. Deregulated genes were classified into functional gene ontology (GO) categories and used for pathway analysis. Classical marker genes of hypertrophy were similarly upregulated in both sexes (α-actin, ANP, BNP, CTGF). Thirty-five genes controlling mitochondrial function (PGC-1, cytochrome oxidase, carnitine palmitoyl transferase, acyl-CoA dehydrogenase, pyruvate dehydrogenase kinase) had lower expression in males compared to females after TAC. Genes encoding ribosomal proteins and genes associated with extracellular matrix remodeling exhibited relative higher expression in males (collagen 3, matrix metalloproteinase 2, TIMP2, and TGFβ2, all about twofold) after TAC. We confirmed 87% of the gene expression by real-time polymerase chain reaction. By GO classification, female-specific genes were related to mitochondria and metabolism and males to matrix and biosynthesis. Promoter studies confirmed the upregulation of PGC-1 by E2. Less downregulation of metabolic genes in female hearts and increased protein synthesis capacity and deregulation of matrix remodeling in male hearts characterize the sex-specific early response to PO. These differences could contribute to subsequent sex differences in cardiac function and HF
Implementing core outcomes in kidney disease: report of the Standardized Outcomes in Nephrology (SONG) implementation workshop
There are an estimated 14,000 randomized trials published in chronic kidney disease. The most frequently reported outcomes are biochemical endpoints, rather than clinical and patient-reported outcomes including cardiovascular disease, mortality, and quality of life. While many trials have focused on optimizing kidney health, the heterogeneity and uncertain relevance of outcomes reported across trials may limit their policy and practice impact. The international Standardized Outcomes in Nephrology (SONG) Initiative was formed to identify core outcomes that are critically important to patients and health professionals, to be reported consistently across trials. We convened a SONG Implementation Workshop to discuss the implementation of core outcomes. Eighty-two patients/caregivers and health professionals participated in plenary and breakout discussions. In this report, we summarize the findings of the workshop in two main themes: socializing the concept of core outcomes, and demonstrating feasibility and usability. We outline implementation strategies and pathways to be established through partnership with stakeholders, which may bolster acceptance and reporting of core outcomes in trials, and encourage their use by end-users such as guideline producers and policymakers to help improve patient-important outcomes
Obesity and type 2 diabetes mellitus drive immune dysfunction, infection development, and sepsis mortality
Obesity and type 2 diabetes mellitus (T2D) are global pandemics. Worldwide, the prevalence of obesity has nearly tripled since 1975 and the prevalence of T2D has almost doubled since 1980. Both obesity and T2D are indolent and chronic diseases that develop gradually, with cellular physiologic changes occurring before the clinical signs and symptoms of the diseases become apparent. Individuals with obesity and T2D are physiologically frail and have an increased risk of infections and mortality from sepsis. Improvement in the morbidity and mortality of these at‐risk populations would provide a great societal benefit. We believe that the worsened outcomes observed in these patient populations is due to immune system dysfunction that is triggered by the chronic low‐grade inflammation present in both diseases. As immune modulatory therapies have been utilized in other chronic inflammatory diseases, there is an emerging role for immune modulatory therapies that target the chronically affected immune pathways in obese and T2D patients. Additionally, bariatric surgery is currently the most successful treatment for obesity and is the only weight loss method that also causes a sustained, substantial improvement of T2D. Consequently, bariatric surgery may also have a role in improving immunity in these patient populations.Review on how obesity and type 2 diabetes mellitus impact immunity and lead to poor clinical outcomes and the cellular changes observed after weight loss.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145577/1/jlb10203_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145577/2/jlb10203.pd
Advancing Sustainable Malting Practices: Aquaporins as Potential Breeding Targets for Improved Water Uptake during Controlled Germination of Barley (Hordeum vulgare L.)
The conversion of raw barley (Hordeum
vulgare L.) to malt requires a process of controlled
germination, where
the grain is submerged in water to raise the moisture content to >40%.
The transmembrane proteins, aquaporins, influence water uptake during
the initial stage of controlled germination, yet little is known of
their involvement in malting. With the current focus on sustainability,
understanding the mechanisms of water uptake and usage during the
initial stages of malting has become vital in improving efficient
malting practices. In this study, we used quantitative proteomics
analysis of two malting barley genotypes demonstrating differing water-uptake
phenotypes in the initial stages of malting. Our study quantified
19 transmembrane proteins from nine families, including seven distinct
aquaporin isoforms, including the plasma intrinsic proteins (PIPs)
PIP1;1, PIP2;1, and PIP2;4 and the tonoplast intrinsic proteins (TIPs)
TIP1;1, TIP2;3, TIP3;1, and TIP3;2. Our findings suggest that the
presence of TIP1;1, TIP3;1, and TIP3;2 in the mature barley grain
proteome is essential for facilitating water uptake, influencing cell
turgor and the formation of large central lytic vacuoles aiding storage
reserve hydrolysis and endosperm modification efficiency. This study
proposes that TIP3s mediate water uptake in malting barley grain,
offering potential breeding targets for improving sustainable malting
practices