205 research outputs found

    Parallelism for Quantum Computation with Qudits

    Full text link
    Robust quantum computation with d-level quantum systems (qudits) poses two requirements: fast, parallel quantum gates and high fidelity two-qudit gates. We first describe how to implement parallel single qudit operations. It is by now well known that any single-qudit unitary can be decomposed into a sequence of Givens rotations on two-dimensional subspaces of the qudit state space. Using a coupling graph to represent physically allowed couplings between pairs of qudit states, we then show that the logical depth of the parallel gate sequence is equal to the height of an associated tree. The implementation of a given unitary can then optimize the tradeoff between gate time and resources used. These ideas are illustrated for qudits encoded in the ground hyperfine states of the atomic alkalies 87^{87}Rb and 133^{133}Cs. Second, we provide a protocol for implementing parallelized non-local two-qudit gates using the assistance of entangled qubit pairs. Because the entangled qubits can be prepared non-deterministically, this offers the possibility of high fidelity two-qudit gates.Comment: 9 pages, 3 figure

    Asymptotically Optimal Quantum Circuits for d-level Systems

    Full text link
    As a qubit is a two-level quantum system whose state space is spanned by |0>, |1>, so a qudit is a d-level quantum system whose state space is spanned by |0>,...,|d-1>. Quantum computation has stimulated much recent interest in algorithms factoring unitary evolutions of an n-qubit state space into component two-particle unitary evolutions. In the absence of symmetry, Shende, Markov and Bullock use Sard's theorem to prove that at least C 4^n two-qubit unitary evolutions are required, while Vartiainen, Moettoenen, and Salomaa (VMS) use the QR matrix factorization and Gray codes in an optimal order construction involving two-particle evolutions. In this work, we note that Sard's theorem demands C d^{2n} two-qudit unitary evolutions to construct a generic (symmetry-less) n-qudit evolution. However, the VMS result applied to virtual-qubits only recovers optimal order in the case that d is a power of two. We further construct a QR decomposition for d-multi-level quantum logics, proving a sharp asymptotic of Theta(d^{2n}) two-qudit gates and thus closing the complexity question for all d-level systems (d finite.) Gray codes are not required, and the optimal Theta(d^{2n}) asymptotic also applies to gate libraries where two-qudit interactions are restricted by a choice of certain architectures.Comment: 18 pages, 5 figures (very detailed.) MatLab files for factoring qudit unitary into gates in MATLAB directory of source arxiv format. v2: minor change

    Cost-Effectiveness of Targeted Reemployment Bonuses

    Full text link
    Targeting reemployment bonus offers to unemployment insurance (UI) claimants identified as most likely to exhaust benefits is estimated to reduce benefit payments. We show that targeting bonus offers with profiling models similar to those in state Worker Profiling and Reemployment Services systems can improve cost effectiveness. Since estimated average benefit payments do not steadily decline as the eligibility screen is gradually tightened, we find that narrow targeting is not optimal. The best candidate is a low bonus amount with a long qualification period, targeted to the half of profiled claimants most likely to exhaust their UI benefit entitlement. I

    A rotation and translation invariant method for 3D organ image classification using deep convolutional neural networks

    Get PDF
    Three-dimensional (3D) medical image classification is useful in applications such as disease diagnosis and content-based medical image retrieval. It is a challenging task due to several reasons. First, image intensity values are vastly different depending on the image modality. Second, intensity values within the same image modality may vary depending on the imaging machine and artifacts may also be introduced in the imaging process. Third, processing 3D data requires high computational power. In recent years, significant research has been conducted in the field of 3D medical image classification. However, most of these make assumptions about patient orientation and imaging direction to simplify the problem and/or work with the full 3D images. As such, they perform poorly when these assumptions are not met. In this paper, we propose a method of classification for 3D organ images that is rotation and translation invariant. To this end, we extract a representative two-dimensional (2D) slice along the plane of best symmetry from the 3D image. We then use this slice to represent the 3D image and use a 20-layer deep convolutional neural network (DCNN) to perform the classification task. We show experimentally, using multi-modal data, that our method is comparable to existing methods when the assumptions of patient orientation and viewing direction are met. Notably, it shows similarly high accuracy even when these assumptions are violated, where other methods fail. We also explore how this method can be used with other DCNN models as well as conventional classification approaches

    Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography–high-resolution mass spectrometry

    Get PDF
    Biofuels from photosynthetic microalgae are quickly gaining interest as a viable carbon-neutral energy source. Typically, characterization of algal feedstock involves breaking down triacylglycerols (TAG) and other intact lipids, followed by derivatization of the fatty acids to fatty acid methyl esters prior to analysis by gas chromatography (GC). However, knowledge of the intact lipid profile could offer significant advantages for discovery stage biofuel research such as the selection of an algal strain or the optimization of growth and extraction conditions. Herein, lipid extracts from microalgae were directly analyzed by ultra-high pressure liquid chromatography–mass spectrometry (UHPLC-MS) using a benchtop Orbitrap mass spectrometer. Phospholipids, glycolipids, and TAGs were analyzed in the same chromatographic run, using a combination of accurate mass and diagnostic fragment ions for identification. Using this approach, greater than 100 unique TAGs were identified over the six algal strains studied and TAG profiles were obtained to assess their potential for biofuel applications. Under the growth conditions employed, Botryococcus braunii and Scenedesmus obliquus yielded the most comprehensive TAG profile with a high abundance of TAGs containing oleic acid

    Raman Spectroscopy of Liquid-Based Cervical Smear Samples as a Triage to Stratify Women Who Are HPV-Positive on Screening

    Get PDF
    Persistent high-risk human papillomavirus (HPV) infection can lead to cervical precancer and cancer. Recently, HPV testing has been introduced for primary cervical screening, but the HPV DNA test cannot distinguish between transient and persistent HPV infection. Thus, there is an unmet clinical need to develop a new test to identify women with a high-risk persistent HPV infection. Raman spectra were recorded from cervical smear samples (n = 60) and, on the basis of HPV DNA and HPV mRNA test results, a classifier was developed to identify persistent HPV infection. A further blinded independent test set (n = 14) was used to validate the model, and sensitivity of 90% and specificity of 100% were achieved. Improved triage would allow women with a high-risk persistent HPV infection to be referred for immediate treatment, while women with a low-risk transient infection could avoid overtreatment

    Time Reversal and n-qubit Canonical Decompositions

    Full text link
    For n an even number of qubits and v a unitary evolution, a matrix decomposition v=k1 a k2 of the unitary group is explicitly computable and allows for study of the dynamics of the concurrence entanglement monotone. The side factors k1 and k2 of this Concurrence Canonical Decomposition (CCD) are concurrence symmetries, so the dynamics reduce to consideration of the a factor. In this work, we provide an explicit numerical algorithm computing v=k1 a k2 for n odd. Further, in the odd case we lift the monotone to a two-argument function, allowing for a theory of concurrence dynamics in odd qubits. The generalization may also be studied using the CCD, leading again to maximal concurrence capacity for most unitaries. The key technique is to consider the spin-flip as a time reversal symmetry operator in Wigner's axiomatization; the original CCD derivation may be restated entirely in terms of this time reversal. En route, we observe a Kramers' nondegeneracy: the existence of a nondegenerate eigenstate of any time reversal symmetric n-qubit Hamiltonian demands (i) n even and (ii) maximal concurrence of said eigenstate. We provide examples of how to apply this work to study the kinematics and dynamics of entanglement in spin chain Hamiltonians.Comment: 20 pages, 3 figures; v2 (17pp.): major revision, new abstract, introduction, expanded bibliograph

    A vision-based machine learning method for barrier access control using vehicle license plate authentication

    Get PDF
    Automatic vehicle license plate recognition is an essential part of intelligent vehicle access control and monitoring systems. With the increasing number of vehicles, it is important that an effective real-time system for automated license plate recognition is developed. Computer vision techniques are typically used for this task. However, it remains a challenging problem, as both high accuracy and low processing time are required in such a system. Here, we propose a method for license plate recognition that seeks to find a balance between these two requirements. The proposed method consists of two stages: detection and recognition. In the detection stage, the image is processed so that a region of interest is identified. In the recognition stage, features are extracted from the region of interest using the histogram of oriented gradients method. These features are then used to train an artificial neural network to identify characters in the license plate. Experimental results show that the proposed method achieves a high level of accuracy as well as low processing time when compared to existing methods, indicating that it is suitable for real-time applications

    Mapping of diabetes susceptibility LOCI in a domestic cat breed with an unusually high incidence of diabetes mellitus

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Genetic variants that are associated with susceptibility to type 2 diabetes (T2D) are important for identification of individuals at risk and can provide insights into the molecular basis of disease. Analysis of T2D in domestic animals provides both the opportunity to improve veterinary management and breeding programs as well as to identify novel T2D risk genes. Australian-bred Burmese (ABB) cats have a 4-fold increased incidence of type 2 diabetes (T2D) compared to Burmese cats bred in the United States. This is likely attributable to a genetic founder effect. We investigated this by performing a genome-wide association scan on ABB cats. Four SNPs were associated with the ABB T2D phenotype with p values \u3c 0.005. All exons and splice junctions of candidate genes near significant single-nucleotide polymorphisms (SNPs) were sequenced, including the genes DGKG, IFG2BP2, SLC8A1, E2F6, ETV5, TRA2B and LIPH. Six candidate polymorphisms were followed up in a larger cohort of ABB cats with or without T2D and also in Burmese cats bred in America, which exhibit low T2D incidence. The original SNPs were confirmed in this cohort as associated with the T2D phenotype, although no novel coding SNPs in any of the seven candidate genes showed association with T2D. The identification of genetic markers associated with T2D susceptibility in ABB cats will enable preventative health strategies and guide breeding programs to reduce the prevalence of T2D in these cats

    Mapping of diabetes susceptibility LOCI in a domestic cat breed with an unusually high incidence of diabetes mellitus

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Genetic variants that are associated with susceptibility to type 2 diabetes (T2D) are important for identification of individuals at risk and can provide insights into the molecular basis of disease. Analysis of T2D in domestic animals provides both the opportunity to improve veterinary management and breeding programs as well as to identify novel T2D risk genes. Australian-bred Burmese (ABB) cats have a 4-fold increased incidence of type 2 diabetes (T2D) compared to Burmese cats bred in the United States. This is likely attributable to a genetic founder effect. We investigated this by performing a genome-wide association scan on ABB cats. Four SNPs were associated with the ABB T2D phenotype with p values \u3c 0.005. All exons and splice junctions of candidate genes near significant single-nucleotide polymorphisms (SNPs) were sequenced, including the genes DGKG, IFG2BP2, SLC8A1, E2F6, ETV5, TRA2B and LIPH. Six candidate polymorphisms were followed up in a larger cohort of ABB cats with or without T2D and also in Burmese cats bred in America, which exhibit low T2D incidence. The original SNPs were confirmed in this cohort as associated with the T2D phenotype, although no novel coding SNPs in any of the seven candidate genes showed association with T2D. The identification of genetic markers associated with T2D susceptibility in ABB cats will enable preventative health strategies and guide breeding programs to reduce the prevalence of T2D in these cats
    corecore