1,179 research outputs found

    A Chandra Study of the Effects of a Major Merger on the Structure of Abell 2319

    Full text link
    We present an analysis of a Chandra observation of the massive, nearby galaxy cluster Abell 2319. A sharp surface brightness discontinuity--suggested by previous, lower angular resolution X-ray imaging--is clearly visible in the ACIS image. This roughly 300kpc feature suggests that a major merger is taking place with a significant velocity component perpendicular to the line of sight. The cluster emission-weighted mean temperature is 11.8+/-0.6kev, somewhat higher than previous temperature measurements. The Chandra temperature map of A2319 reveals substructure resembling that anticipated based on hydrodynamic simulations of cluster mergers. The merger feature shows a pressure change across the surface brightness discontinuity by a factor of <=2.5. The higher density side of the front has a lower temperature, suggesting the presence of a cold front similar to those in many other merging clusters. The velocity of the front is roughly sonic. We compare bulk properties of the ICM and galaxies in A2319 to the same properties in a large sample of clusters as a way of gauging the effects of the major merger. Interestingly, by comparing A2319 to a sample of 44 clusters studied with the ROSAT PSPC we find that the X-ray luminosity, isophotal size, and ICM mass are consistent with the expected values for a cluster of its temperature; in addition, the K-band galaxy light is consistent with the light--temperature scaling relation derived from a sample of about 100 clusters studied with 2MASS. Together, these results indicate either that the merger in A2319 has not been effective at altering the bulk properties of the cluster, or that there are large but correlated displacements in these quantities.Comment: 11 pages, 8 figures, ApJ Submitte

    Measurement of the Zero Crossing in a Feshbach Resonance of Fermionic 6-Li

    Full text link
    We measure a zero crossing in the scattering length of a mixture of the two lowest hyperfine states of 6-Li. To locate the zero crossing, we monitor the decrease in temperature and atom number arising from evaporation in a CO2 laser trap as a function of magnetic field B. The temperature decrease and atom loss are minimized for B=528(4) G, consistent with no evaporation. We also present preliminary calculations using potentials that have been constrained by the measured zero crossing and locate a broad Feshbach resonance at approximately 860 G, in agreement with previous theoretical predictions. In addition, our theoretical model predicts a second and much narrower Feshbach resonance near 550 G.Comment: Five pages, four figure

    Effective s- and p-Wave Contact Interactions in Trapped Degenerate Fermi Gases

    Full text link
    The structure and stability of dilute degenerate Fermi gases trapped in an external potential is discussed with special emphasis on the influence of s- and p-wave interactions. In a first step an Effective Contact Interaction for all partial waves is derived, which reproduces the energy spectrum of the full potential within a mean-field model space. Using the s- and p-wave part the energy density of the multi-component Fermi gas is calculated in Thomas-Fermi approximation. On this basis the stability of the one- and two-component Fermi gas against mean-field induced collapse is investigated. Explicit stability conditions in terms of density and total particle number are given. For the single-component system attractive p-wave interactions limit the density of the gas. In the two-component case a subtle competition of s- and p-wave interactions occurs and gives rise to a rich variety of phenomena. A repulsive p-wave part, for example, can stabilize a two-component system that would otherwise collapse due to an attractive s-wave interaction. It is concluded that the p-wave interaction may have important influence on the structure of degenerate Fermi gases and should not be discarded from the outset.Comment: 18 pages, 11 figures (using RevTEX4

    Development of an apparatus for cooling 6Li-87Rb Fermi-Bose mixtures in a light-assisted magnetic trap

    Full text link
    We describe an experimental setup designed to produce ultracold trapped gas clouds of fermionic 6Li and bosonic 87Rb. This combination of alkali metals has the potential to reach deeper Fermi degeneracy with respect to other mixtures since it allows for improved heat capacity matching which optimizes sympathetic cooling efficiency. Atomic beams of the two species are independently produced and then decelerated by Zeeman slowers. The slowed atoms are collected into a magneto-optical trap and then transferred into a quadrupole magnetic trap. An ultracold Fermi gas with temperature in the 10^-3 T_F range should be attainable through selective confinement of the two species via a properly detuned laser beam focused in the center of the magnetic trap.Comment: Presented at LPHYS'06, 8 figure

    Spectroscopic Temperature Determination of Degenerate Fermi Gases

    Full text link
    We suggest a simple method for measuring the temperature of ultra-cold gases made of fermions. We show that by using a two-photon Raman probe, it is possible to obtain lineshapes which reveal properties of the degenerate sample, notably its temperature TT. The proposed method could be used with identical fermions in different hyperfine states interacting via s-wave scattering or identical fermions in the same hyperfine state via p-wave scattering. We illustrate the applicability of the method in realistic conditions for 6^6Li prepared in two different hyperfine states. We find that temperatures down to 0.05 TFT_{F} can be determined by this {\it in-situ} method.Comment: 7 pages, 4 figures, Revtex

    Multiple agency perspective, family control, and private information abuse in an emerging economy

    Get PDF
    Using a comprehensive sample of listed companies in Hong Kong this paper investigates how family control affects private information abuses and firm performance in emerging economies. We combine research on stock market microstructure with more recent studies of multiple agency perspectives and argue that family ownership and control over the board increases the risk of private information abuse. This, in turn, has a negative impact on stock market performance. Family control is associated with an incentive to distort information disclosure to minority shareholders and obtain private benefits of control. However, the multiple agency roles of controlling families may have different governance properties in terms of investors’ perceptions of private information abuse. These findings contribute to our understanding of the conflicting evidence on the governance role of family control within a multiple agency perspectiv

    Uncovering the drivers of host-associated microbiota with joint species distribution modelling

    Get PDF
    In addition to the processes structuring free‐living communities, host‐associated microbiota are directly or indirectly shaped by the host. Therefore, microbiota data have a hierarchical structure where samples are nested under one or several variables representing host‐specific factors, often spanning multiple levels of biological organization. Current statistical methods do not accommodate this hierarchical data structure and therefore cannot explicitly account for the effect of the host in structuring the microbiota. We introduce a novel extension of joint species distribution models (JSDMs) which can straightforwardly accommodate and discern between effects such as host phylogeny and traits, recorded covariates such as diet and collection site, among other ecological processes. Our proposed methodology includes powerful yet familiar outputs seen in community ecology overall, including (a) model‐based ordination to visualize and quantify the main patterns in the data; (b) variance partitioning to assess how influential the included host‐specific factors are in structuring the microbiota; and (c) co‐occurrence networks to visualize microbe‐to‐microbe associations.Spanish Government, Grant/Award Number: BES-2011-049043; LabEx TULIP, Grant/ Award Number: ANR-10-LABX-41, ANR-11- IDEX-002-02; Region Midi-Pyrenees, Grant/ Award Number: CNRS 121090; European Research Council

    Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot

    Get PDF
    Motional narrowing refers to the striking phenomenon where the resonance line of a system coupled to a reservoir becomes narrower when increasing the reservoir fluctuation. A textbook example is found in nuclear magnetic resonance, where the fluctuating local magnetic fields created by randomly oriented nuclear spins are averaged when the motion of the nuclei is thermally activated. The existence of a motional narrowing effect in the optical response of semiconductor quantum dots remains so far unexplored. This effect may be important in this instance since the decoherence dynamics is a central issue for the implementation of quantum information processing based on quantum dots. Here we report on the experimental evidence of motional narrowing in the optical spectrum of a semiconductor quantum dot broadened by the spectral diffusion phenomenon. Surprisingly, motional narrowing is achieved when decreasing incident power or temperature, in contrast with the standard phenomenology observed for nuclear magnetic resonance
    corecore