1,727 research outputs found

    Three-body problem in Fermi gases with short-range interparticle interaction

    Full text link
    We discuss 3-body processes in ultracold two-component Fermi gases with short-range intercomponent interaction characterized by a large and positive scattering length aa. It is found that in most cases the probability of 3-body recombination is a universal function of the mass ratio and aa, and is independent of short-range physics. We also calculate the scattering length corresponding to the atom-dimer interaction.Comment: 4 pages, 2 figure

    Efficient and robust initialization of a qubit register with fermionic atoms

    Full text link
    We show that fermionic atoms have crucial advantages over bosonic atoms in terms of loading in optical lattices for use as a possible quantum computation device. After analyzing the change in the level structure of a non-uniform confining potential as a periodic potential is superimposed to it, we show how this structure combined with the Pauli principle and fermion degeneracy can be exploited to create unit occupancy of the lattice sites with very high efficiency.Comment: 4 pages, 3 figure

    Measurement of the Zero Crossing in a Feshbach Resonance of Fermionic 6-Li

    Full text link
    We measure a zero crossing in the scattering length of a mixture of the two lowest hyperfine states of 6-Li. To locate the zero crossing, we monitor the decrease in temperature and atom number arising from evaporation in a CO2 laser trap as a function of magnetic field B. The temperature decrease and atom loss are minimized for B=528(4) G, consistent with no evaporation. We also present preliminary calculations using potentials that have been constrained by the measured zero crossing and locate a broad Feshbach resonance at approximately 860 G, in agreement with previous theoretical predictions. In addition, our theoretical model predicts a second and much narrower Feshbach resonance near 550 G.Comment: Five pages, four figure

    Collective excitations in a fermion-fermion mixture with different Fermi surfaces

    Full text link
    In this paper, collective excitations in a homogeneous fermion-fermion mixture with different Fermi surfaces are studied. In the Fermi liquid phase, the zero-sound velocity is found to be larger than the largest Fermi velocity. With attractive interactions, the superfluid phase appears below a critical temperature, and the phase mode is the low-energy collective excitation. The velocity of the phase mode is proportional to the geometric mean of the two Fermi velocities. The difference between the two velocities may serve as a tool to detect the superfluid phase.Comment: 4 pages. To be published in Phys. Rev.

    All-optical formation of a Bose-Einstein condensate for applications in scanning electron microscopy

    Full text link
    We report on the production of a F=1 spinor condensate of 87Rb atoms in a single beam optical dipole trap formed by a focused CO2 laser. The condensate is produced 13mm below the tip of a scanning electron microscope employing standard all-optical techniques. The condensate fraction contains up to 100,000 atoms and we achieve a duty cycle of less than 10s.Comment: 5 pages, 4 figure

    Fictitious Magnetic Resonance by Quasi-Electrostatic Field

    Full text link
    We propose a new kind of spin manipulation method using a {\it fictitious} magnetic field generated by a quasi-electrostatic field. The method can be applicable to every atom with electron spins and has distinct advantages of small photon scattering rate and local addressability. By using a CO2\rm{CO_2} laser as a quasi-electrostatic field, we have experimentally demonstrated the proposed method by observing the Rabi-oscillation of the ground state hyperfine spin F=1 of the cold 87Rb\rm{^{87}Rb} atoms and the Bose-Einstein condensate.Comment: 5 pages, 5 figure

    Characterization of elastic scattering near a Feshbach resonance in rubidium 87

    Full text link
    The s-wave scattering length for elastic collisions between 87Rb atoms in the state |f,m_f>=|1,1> is measured in the vicinity of a Feshbach resonance near 1007 G. Experimentally, the scattering length is determined from the mean-field driven expansion of a Bose-Einstein condensate in a homogeneous magnetic field. The scattering length is measured as a function of the magnetic field and agrees with the theoretical expectation. The position and the width of the resonance are determined to be 1007.40 G and 0.20 G, respectively.Comment: 4 pages, 2 figures minor revisions: added Ref.6, included error bar

    Very long storage times and evaporative cooling of cesium atoms in a quasi-electrostatic dipole trap

    Get PDF
    We have trapped cesium atoms over many minutes in the focus of a CO2_2-laser beam employing an extremely simple laser system. Collisional properties of the unpolarized atoms in their electronic ground state are investigated. Inelastic binary collisions changing the hyperfine state lead to trap loss which is quantitatively analyzed. Elastic collisions result in evaporative cooling of the trapped gas from 25 μ\muK to 10 μ\muK over a time scale of about 150 s.Comment: 5 pages, 3 figure

    Stress Dependence of Exciton Relaxation Processes in Cu2O

    Full text link
    A comprehensive study of the exciton relaxation processes in Cu2O has led to some surprises. We find that the ortho-para conversion rate becomes slower at high stress, and that the Auger nonradiative recombination rate increases with stress, with apparently no Auger recombination at zero stress. These results have important consequences for the pursuit of Bose-Einstein condensation of excitons in a harmonic potential.Comment: 10 figures, 1 tabl
    • …
    corecore