643 research outputs found

    Charge injection instability in perfect insulators

    Full text link
    We show that in a macroscopic perfect insulator, charge injection at a field-enhancing defect is associated with an instability of the insulating state or with bistability of the insulating and the charged state. The effect of a nonlinear carrier mobility is emphasized. The formation of the charged state is governed by two different processes with clearly separated time scales. First, due to a fast growth of a charge-injection mode, a localized charge cloud forms near the injecting defect (or contact). Charge injection stops when the field enhancement is screened below criticality. Secondly, the charge slowly redistributes in the bulk. The linear instability mechanism and the final charged steady state are discussed for a simple model and for cylindrical and spherical geometries. The theory explains an experimentally observed increase of the critical electric field with decreasing size of the injecting contact. Numerical results are presented for dc and ac biased insulators.Comment: Revtex, 7pages, 4 ps figure

    Efficiency in nanostructured thermionic and thermoelectric devices

    Get PDF
    Advances in solid-state device design now allow the spectrum of transmitted electrons in thermionic and thermoelectric devices to be engineered in ways that were not previously possible. Here we show that the shape of the electron energy spectrum in these devices has a significant impact on their performance. We distinguish between traditional thermionic devices where electron momentum is filtered in the direction of transport only and a second type, in which the electron filtering occurs according to total electron momentum. Such 'total momentum filtered' kr thermionic devices could potentially be implemented in, for example, quantum dot superlattices. It is shown that whilst total momentum filtered thermionic devices may achieve efficiency equal to the Carnot value, traditional thermionic devices are limited to efficiency below this. Our second main result is that the electronic efficiency of a device is not only improved by reducing the width of the transmission filter as has previously been shown, but also strongly depends on whether the transmission probability rises sharply from zero to full transmission. The benefit of increasing efficiency through a sharply rising transmission probability is that it can be achieved without sacrificing device power, in contrast to the use of a narrow transmission filter which can greatly reduce power. We show that devices which have a sharply-rising transmission probability significantly outperform those which do not and it is shown such transmission probabilities may be achieved with practical single and multibarrier devices. Finally, we comment on the implications of the effect the shape of the electron energy spectrum on the efficiency of thermoelectric devices.Comment: 11 pages, 15 figure

    Measuring Temperature Gradients over Nanometer Length Scales

    Full text link
    When a quantum dot is subjected to a thermal gradient, the temperature of electrons entering the dot can be determined from the dot's thermocurrent if the conductance spectrum and background temperature are known. We demonstrate this technique by measuring the temperature difference across a 15 nm quantum dot embedded in a nanowire. This technique can be used when the dot's energy states are separated by many kT and will enable future quantitative investigations of electron-phonon interaction, nonlinear thermoelectric effects, and the effciency of thermoelectric energy conversion in quantum dots.Comment: 6 pages, 5 figure

    Merit, Tenure, and Bureaucratic Behavior: Evidence From a Conjoint Experiment in the Dominican Republic

    Get PDF
    Bureaucratic behavior in developing countries remains poorly understood. Why do some public servants – yet not others – work hard to deliver public services, misuse state resources, and/or participate in electoral mobilization? A classic answer comes from Weber: bureaucratic structures shift behavior towards integrity, neutrality, and commitment to public service. Our paper conducts the first survey experimental test of the effects of bureaucratic structures. It does so through a conjoint experiment with public servants in the Dominican Republic. Looking at merit examinations and job stability, we find that Weber was right – but only partially. Recruitment by examination curbs corruption and political services by bureaucrats, while enhancing work motivation. Job stability, by contrast, only decreases political services: tenured bureaucrats are less likely to participate in electoral mobilization. Examinations thus enhance the quality of bureaucracy (motivation and lower corruption) and democracy (electoral competition); job stability only enhances the quality of democracy

    Hard X-ray Emission Associated with White Dwarfs

    Get PDF
    We have used the WGACAT to search for hard X-ray sources associated with white dwarfs (WDs) from the catalog of McCook & Sion (1999). We find 17 X-ray sources coincident with WDs showing significant hard X-ray emission at energies >0.5 keV. Twelve of these WDs are in known binary systems, in two of which the accretion of the close companion's material onto the white dwarf produces the hard X-ray emission, and in the other ten of which the late-type companions' coronal activity emits hard X-rays. One WD is projected near an AGN which is responsible for the hard X-ray emission. The remaining four WDs and two additional white dwarfs with hard X-ray emission appear single. The lack of near-IR excess from the apparently single WDs suggests that either X-ray observations are more effective than near-IR photometry in diagnosing faint companions or a different emission mechanism is needed. It is intriguing that 50% of the six apparently single WDs with hard X-ray emission are among the hottest WDs. We have compared X-ray properties of 11 hot WDs with different spectral types, and conclude that stellar pulsation and fast stellar winds are not likely the origin of the hard X-ray emission, but a leakage of the high-energy Wien tail of emission from deep in the stellar atmosphere remains a tantalizing source of hard X-ray emission from hot DO and DQZO WDs. (This abstract is an abridged version.)Comment: 35 pages, 8 figures, 4 tables, accepted for publication in AJ, April issu

    Observations of Coronal Mass Ejections with the Coronal Multichannel Polarimeter

    Full text link
    The Coronal Multichannel Polarimeter (CoMP) measures not only the polarization of coronal emission, but also the full radiance profiles of coronal emission lines. For the first time, CoMP observations provide high-cadence image sequences of the coronal line intensity, Doppler shift and line width simultaneously in a large field of view. By studying the Doppler shift and line width we may explore more of the physical processes of CME initiation and propagation. Here we identify a list of CMEs observed by CoMP and present the first results of these observations. Our preliminary analysis shows that CMEs are usually associated with greatly increased Doppler shift and enhanced line width. These new observations provide not only valuable information to constrain CME models and probe various processes during the initial propagation of CMEs in the low corona, but also offer a possible cost-effective and low-risk means of space weather monitoring.Comment: 6 figures. Will appear in the special issue of Coronal Magnetism, Sol. Phy

    Effect of Thermoelectric Cooling in Nanoscale Junctions

    Full text link
    We propose a thermoelectric cooling device based on an atomic-sized junction. Using first-principles approaches, we investigate the working conditions and the coefficient of performance (COP) of an atomic-scale electronic refrigerator where the effects of phonon's thermal current and local heating are included. It is observed that the functioning of the thermoelectric nano-refrigerator is restricted to a narrow range of driving voltages. Compared with the bulk thermoelectric system with the overwhelmingly irreversible Joule heating, the 4-Al atomic refrigerator has a higher efficiency than a bulk thermoelectric refrigerator with the same ZTZT due to suppressed local heating via the quasi-ballistic electron transport and small driving voltages. Quantum nature due to the size minimization offered by atomic-level control of properties facilitates electron cooling beyond the expectation of the conventional thermoelectric device theory.Comment: 8 figure

    Proximal tibiofibular synostosis as a possible cause of a pseudoradicular syndrome: a case report

    Get PDF
    This paper presents a case report of persistent low back pain and suspected lumbar radiculopathy. A synostosis at the level of the proximal tibiofibular joint was diagnosed. After successful resection of the synostosis, the low back symptoms resolved completely. This is the first report of a proximal tibiofibular synostosis as a possible cause of referred pain proximally

    BCL-2 Inhibition Targets Oxidative Phosphorylation and Selectively Eradicates Quiescent Human Leukemia Stem Cells

    Get PDF
    SummaryMost forms of chemotherapy employ mechanisms involving induction of oxidative stress, a strategy that can be effective due to the elevated oxidative state commonly observed in cancer cells. However, recent studies have shown that relative redox levels in primary tumors can be heterogeneous, suggesting that regimens dependent on differential oxidative state may not be uniformly effective. To investigate this issue in hematological malignancies, we evaluated mechanisms controlling oxidative state in primary specimens derived from acute myelogenous leukemia (AML) patients. Our studies demonstrate three striking findings. First, the majority of functionally defined leukemia stem cells (LSCs) are characterized by relatively low levels of reactive oxygen species (termed “ROS-low”). Second, ROS-low LSCs aberrantly overexpress BCL-2. Third, BCL-2 inhibition reduced oxidative phosphorylation and selectively eradicated quiescent LSCs. Based on these findings, we propose a model wherein the unique physiology of ROS-low LSCs provides an opportunity for selective targeting via disruption of BCL-2-dependent oxidative phosphorylation
    corecore