23 research outputs found

    A new, large-bodied omnivorous bat (Noctilionoidea: Mystacinidae) reveals lost morphological and ecological diversity since the Miocene in New Zealand

    Get PDF
    A new genus and species of fossil bat is described from New Zealand's only pre-Pleistocene Cenozoic terrestrial fauna, the early Miocene St Bathans Fauna of Central Otago, South Island. Bayesian total evidence phylogenetic analysis places this new Southern Hemisphere taxon among the burrowing bats (mystacinids) of New Zealand and Australia, although its lower dentition also resembles Africa's endemic sucker-footed bats (myzopodids). As the first new bat genus to be added to New Zealand's fauna in more than 150 years, it provides new insight into the original diversity of chiropterans in Australasia. It also underscores the significant decline in morphological diversity that has taken place in the highly distinctive, semi-terrestrial bat family Mystacinidae since the Miocene. This bat was relatively large, with an estimated body mass of ~40 g, and its dentition suggests it had an omnivorous diet. Its striking dental autapomorphies, including development of a large hypocone, signal a shift of diet compared with other mystacinids, and may provide evidence of an adaptive radiation in feeding strategy in this group of noctilionoid bats

    Armed Rollers: Does Nestling’s Vomit Function as a Defence against Predators?

    Get PDF
    Chemical defences against predators are widespread in the animal kingdom although have been seldom reported in birds. Here, we investigate the possibility that the orange liquid that nestlings of an insectivorous bird, the Eurasian roller (Coracias garrulus), expel when scared at their nests acts as a chemical defence against predators. We studied the diet of nestling rollers and vomit origin, its chemical composition and deterrent effect on a mammal generalist predator. We also hypothesized that nestling rollers, as their main prey (i.e. grasshoppers) do from plants, could sequester chemicals from their prey for their use. Grasshoppers, that also regurgitate when facing to a threat, store the harmful substances used by plants to defend themselves against herbivores. We found that nestling rollers only vomit after being grasped and moved. The production of vomit depended on food consumption and the vomit contained two deterrent chemicals (hydroxycinnamic and hydroxybenzoic acids) stored by grasshoppers and used by plants to diminish herbivory, suggesting that they originate from the rollers’ prey. Finally, we showed for the first time that the oral secretion of a vertebrate had a deterrent effect on a model predator because vomit of nestling rollers made meat distasteful to dogs. These results support the idea that the vomit of nestling rollers is a chemical defence against predators.Financial support was provided by the Junta de Andalucía (project P06-RNM-02177) and the Spanish Ministry of Science and Education/FEDER (projects CGL2008-00718 and CGL2011-27561)

    Managing an invasive predator pre-adapted to a pulsed resource: a model of stoat (Mustela erminea) irruptions in New Zealand beech forests

    No full text
    The stoat (Mustela erminea) is a specialist predator that evolved to exploit the unstable populations of northern voles and lemmings. It was introduced to New Zealand, where it is pre-adapted to respond with a population irruption to the resource pulses that follow a heavy seedfall of southern beech (Nothofagus spp.). Culling stoats during an irruption is necessary to reduce damaging predation on nesting endemic birds. Culling might not reduce the stoat population long term, however, if high natural mortality exceeds culling mortality in peak years. During other phases of the beech-mast cycle, culling might have a greater effect on a smaller stoat population, whether or not damage prevention is critical. We developed a 4-matrix model to predict the effects of culling on k, the annual rate of change in the size of the stoat population, through the four annual phases of an average masting cycle, explicitly distinguishing between apparent and real culling. In the Post-seedfall phase of the cycle, large numbers of stoats are killed, but little of this extra mortality is additive; in other phases, culling removes larger proportions of smaller total numbers of stoats that would otherwise have lived. Culling throughout all phases is most effective at reducing stoat populations, but is also the most expensive option. Culling in Postseedfall plus Seed or Crash years is somewhat less effective but better than culling in one phase only. Culling has different short-term effects on stoat age distribution depending on the phase of the cycle when culling begins
    corecore