19 research outputs found

    The effects of aerobic exercise training at two different intensities in obesity and type 2 diabetes: implications for oxidative stress, low-grade inflammation and nitric oxide production

    Get PDF
    Aims To investigate the effect of 16 weeks of aerobic training performed at two different intensities on nitric oxide (tNOx) availability and iNOS/nNOS expression, oxidative stress (OS) and inflammation in obese humans with or without type 2 diabetes mellitus (T2DM). Methods Twenty-five sedentary, obese (BMI > 30 kg/m(2)) males (52.8 +/- 7.2 years); 12 controls versus 13 T2DM were randomly allocated to four groups that exercised for 30 min, three times per week either at low (Fat-Max; 30-40 % VO2max) or moderate (T-vent; 55-65 % VO2max) intensity. Before and after training, blood and muscle samples (v. lateralis) were collected. Results Baseline erythrocyte glutathione was lower (21.8 +/- 2.8 vs. 32.7 +/- 4.4 nmol/ml) and plasma protein oxidative damage and IL-6 were higher in T2DM (141.7 +/- 52.1 vs. 75.5 +/- 41.6 nmol/ml). Plasma catalase increased in T2DM after T-vent training (from 0.98 +/- 0.22 to 1.96 +/- 0.3 nmol/min/ml). T2DM groups demonstrated evidence of oxidative damage in response to training (elevated protein carbonyls). Baseline serum tNOx were higher in controls than T2DM (18.68 +/- 2.78 vs. 12.34 +/- 3.56 mu mol/l). Training at T-vent increased muscle nNOS and tNOx in the control group only. Pre-training muscle nNOS was higher in controls than in T2DMs, while the opposite was found for iNOS. No differences were found after training for plasma inflammatory markers. Conclusion Exercise training did not change body composition or aerobic fitness, but improved OS markers, especially when performed at T-vent. Non-diabetics responded to T-vent training by increasing muscle nNOS expression and tNOx levels in skeletal muscle while these parameters did not change in T2DM, perhaps due to higher insulin resistance (unchanged after intervention)

    The impact of the initial COVID-19 outbreak on young adults’ mental health: a longitudinal study of risk and resilience factors

    Get PDF
    Few studies assessing the effects of COVID-19 on mental health include prospective markers of risk and resilience necessary to understand and mitigate the combined impacts of the pandemic, lockdowns, and other societal responses. This population-based study of young adults includes individuals from the Neuroscience in Psychiatry Network (n = 2403) recruited from English primary care services and schools in 2012–2013 when aged 14–24. Participants were followed up three times thereafter, most recently during the initial outbreak of the COVID-19 outbreak when they were aged between 19 and 34. Repeated measures of psychological distress (K6) and mental wellbeing (SWEMWBS) were supplemented at the latest assessment by clinical measures of depression (PHQ-9) and anxiety (GAD-7). A total of 1000 participants, 42% of the original cohort, returned to take part in the COVID-19 follow-up; 737 completed all four assessments [mean age (SD), 25.6 (3.2) years; 65.4% female; 79.1% White]. Our findings show that the pandemic led to pronounced deviations from existing mental health-related trajectories compared to expected levels over approximately seven years. About three-in-ten young adults reported clinically significant depression (28.8%) or anxiety (27.6%) under current NHS guidelines; two-in-ten met clinical cut-offs for both. About 9% reported levels of psychological distress likely to be associated with serious functional impairments that substantially interfere with major life activities; an increase by 3% compared to pre-pandemic levels. Deviations from personal trajectories were not necessarily restricted to conventional risk factors; however, individuals with pre-existing health conditions suffered disproportionately during the initial outbreak of the COVID-19 pandemic. Resilience factors known to support mental health, particularly in response to adverse events, were at best mildly protective of individual psychological responses to the pandemic. Our findings underline the importance of monitoring the long-term effects of the ongoing pandemic on young adults’ mental health, an age group at particular risk for the emergence of psychopathologies. Our findings further suggest that maintaining access to mental health care services during future waves, or potential new pandemics, is particularly crucial for those with pre-existing health conditions. Even though resilience factors known to support mental health were only mildly protective during the initial outbreak of the COVID-19 pandemic, it remains to be seen whether these factors facilitate mental health in the long term

    Combined point of care nucleic acid and antibody testing for SARS-CoV-2 following emergence of D614G Spike Variant

    Get PDF
    Rapid COVID-19 diagnosis in hospital is essential, though complicated by 30-50% of nose/throat swabs being negative by SARS-CoV-2 nucleic acid amplification testing (NAAT). Furthermore, the D614G spike mutant now dominates the pandemic and it is unclear how serological tests designed to detect anti-Spike antibodies perform against this variant. We assess the diagnostic accuracy of combined rapid antibody point of care (POC) and nucleic acid assays for suspected COVID-19 disease due to either wild type or the D614G spike mutant SARS-CoV-2. The overall detection rate for COVID-19 is 79.2% (95CI 57.8-92.9%) by rapid NAAT alone. Combined point of care antibody test and rapid NAAT is not impacted by D614G and results in very high sensitivity for COVID-19 diagnosis with very high specificity

    An expanding manifold in transmodal regions characterizes adolescent reconfiguration of structural connectome organization

    Get PDF
    Funder: Canada Research Chairs; FundRef: http://dx.doi.org/10.13039/501100001804Funder: Fonds de la Recherche du Quebec – SantéFunder: Autism Research TrustFunder: Canadian Institutes of Health Research; FundRef: http://dx.doi.org/10.13039/501100000024Funder: BrainCanadaFunder: MNI-Cambridge collaborative awardAdolescence is a critical time for the continued maturation of brain networks. Here, we assessed structural connectome development in a large longitudinal sample ranging from childhood to young adulthood. By projecting high-dimensional connectomes into compact manifold spaces, we identified a marked expansion of structural connectomes, with strongest effects in transmodal regions during adolescence. Findings reflected increased within-module connectivity together with increased segregation, indicating increasing differentiation of higher-order association networks from the rest of the brain. Projection of subcortico-cortical connectivity patterns into these manifolds showed parallel alterations in pathways centered on the caudate and thalamus. Connectome findings were contextualized via spatial transcriptome association analysis, highlighting genes enriched in cortex, thalamus, and striatum. Statistical learning of cortical and subcortical manifold features at baseline and their maturational change predicted measures of intelligence at follow-up. Our findings demonstrate that connectome manifold learning can bridge the conceptual and empirical gaps between macroscale network reconfigurations, microscale processes, and cognitive outcomes in adolescent development

    Complement lectin pathway activation is associated with COVID-19 disease severity, independent of MBL2 genotype subgroups

    Get PDF
    IntroductionWhile complement is a contributor to disease severity in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, all three complement pathways might be activated by the virus. Lectin pathway activation occurs through different pattern recognition molecules, including mannan binding lectin (MBL), a protein shown to interact with SARS-CoV-2 proteins. However, the exact role of lectin pathway activation and its key pattern recognition molecule MBL in COVID-19 is still not fully understood.MethodsWe therefore investigated activation of the lectin pathway in two independent cohorts of SARS-CoV-2 infected patients, while also analysing MBL protein levels and potential effects of the six major single nucleotide polymorphisms (SNPs) found in the MBL2 gene on COVID-19 severity and outcome.ResultsWe show that the lectin pathway is activated in acute COVID-19, indicated by the correlation between complement activation product levels of the MASP-1/C1-INH complex (p=0.0011) and C4d (p<0.0001) and COVID-19 severity. Despite this, genetic variations in MBL2 are not associated with susceptibility to SARS-CoV-2 infection or disease outcomes such as mortality and the development of Long COVID.ConclusionIn conclusion, activation of the MBL-LP only plays a minor role in COVID-19 pathogenesis, since no clinically meaningful, consistent associations with disease outcomes were noted
    corecore