1,776 research outputs found

    Physical Conditoins in Orion's Veil II: A Multi-Component Study of the Line of Sight Toward the Trapezium

    Full text link
    Orion's Veil is an absorbing screen that lies along the line of sight to the Orion H II region. It consists of two or more layers of gas that must lie within a few parsecs of the Trapezium cluster. Our previous work considered the Veil as a whole and found that the magnetic field dominates the energetics of the gas in at least one component. Here we use high-resolution STIS UV spectra that resolve the two velocity components in absorption and determine the conditions in each. We derive a volume hydrogen density, 21 cm spin temperature, turbulent velocity, and kinetic temperature, for each. We combine these estimates with magnetic field measurements to find that magnetic energy significantly dominates turbulent and thermal energies in one component, while the other component is close to equipartition between turbulent and magnetic energies. We observe molecular hydrogen absorption for highly excited v, J levels that are photoexcited by the stellar continuum, and detect blueshifted S III and P III. These ions must arise from ionized gas between the mostly neutral portions of the Veil and the Trapezium and shields the Veil from ionizing radiation. We find that this layer of ionized gas is also responsible for He I absorption in the Veil, which resolves a 40-year-old debate on the origin of He I absorption towards the Trapezium. Finally, we determine that the ionized and mostly atomic layers of the Veil will collide in less than 85,000 years.Comment: 43 pages, 15 figures, to be published in Ap

    Self-Binding Transition in Bose Condensates with Laser-Induced ``Gravitation''

    Get PDF
    In our recent publication (D. O'Dell, et al, Phys. Rev. Lett. 84, 5687 (2000)) we proposed a scheme for electromagnetically generating a self-bound Bose-Einstein condensate with 1/r attractive interactions: the analog of a Bose star. Here we focus upon the conditions neccessary to observe the transition from external trapping to self-binding. This transition becomes manifest in a sharp reduction of the condensate radius and its dependence on the laser intensity rather that the trap potential.Comment: 5 pages, 2 figures: slightly enhanced text: more explanatio

    Macroscopic Quantum Tunneling of Ferromagnetic Domain Walls

    Full text link
    Quantum tunneling of domain walls out of an impurity potential in a mesoscopic ferromagnetic sample is investigated. Using improved expressions for the domain wall mass and for the pinning potential, we find that the cross-over temperature between thermal activation and quantum tunneling is of a different functional form than found previously. In materials like Ni or YIG, the crossover temperatures are around 5 mK. We also find that the WKB exponent is typically two orders of magnitude larger than current estimates. The sources for these discrepancies are discussed, and precise estimates for the transition from three-dimensional to one-dimensional magnetic behavior of a wire are given. The cross-over temperatures from thermal to quantum transitions and tunneling rates are calculated for various materials and sample sizes.Comment: 10 pages, 2 postscript figures, REVTe

    Extended axion electrodynamics: Optical activity induced by nonstationary dark matter

    Get PDF
    We establish a new self-consistent Einstein-Maxwell-axion model based on the Lagrangian, which is linear in the pseudoscalar (axion) field and its four-gradient and includes the four-vector of macroscopic velocity of the axion system as a whole. We consider extended equations of the axion electrodynamics, modified gravity field equations, and discuss nonstationary effects in the phenomenon of optical activity induced by axions.Comment: 6 pages, 0 figures, accepted for publication in the Journal Gravitation and Cosmology, reported at the 14th Russian Gravitational Conference (Ulyanovsk, 2011

    The influence of transition metal solutes on dislocation core structure and values of Peierls stress and barrier in tungsten

    Full text link
    Several transition metals were examined to evaluate their potential for improving the ductility of tungsten. The dislocation core structure and Peierls stress and barrier of 1/21/2 screw dislocations in binary tungsten-transition metal alloys (W1x_{1-x}TMx_{x}) were investigated using first principles electronic structure calculations. The periodic quadrupole approach was applied to model the structure of 1/21/2 dislocation. Alloying with transition metals was modeled using the virtual crystal approximation and the applicability of this approach was assessed by calculating the equilibrium lattice parameter and elastic constants of the tungsten alloys. Reasonable agreement was obtained with experimental data and with results obtained from the conventional supercell approach. Increasing the concentration of a transition metal from the VIIIA group, i.e. the elements in columns headed by Fe, Co and Ni, leads to reduction of the CC^\prime elastic constant and increase of elastic anisotropy A=C44/CC_{44}/C^\prime. Alloying W with a group VIIIA transition metal changes the structure of the dislocation core from symmetric to asymmetric, similar to results obtained for W1x_{1-x}Rex_{x} alloys in the earlier work of Romaner {\it et al} (Phys. Rev. Lett. 104, 195503 (2010))\comments{\cite{WRECORE}}. In addition to a change in the core symmetry, the values of the Peierls stress and barrier are reduced. The latter effect could lead to increased ductility in a tungsten-based alloy\comments{\cite{WRECORE}}. Our results demonstrate that alloying with any of the transition metals from the VIIIA group should have similar effect as alloying with Re.Comment: 12 pages, 8 figures, 3 table

    Quantum Vacuum Contribution to the Momentum of the Dielectric Media

    Full text link
    Momentum transfer between matter and electromagnetic field is analyzed. The related equations of motion and conservation laws are derived using relativistic formalism. Their correspondence to various, at first sight self-contradicting, experimental data (the so called Abraham-Minkowski controversy) is demonstrated. A new, Casimir like, quantum phenomenon is predicted: contribution of vacuum fluctuations to the motion of dielectric liquids in crossed electric and magnetic fields. Velocities about 50nm/s50nm/s can be expected due to the contribution of high frequency vacuum modes

    Rotons in gaseous Bose-Einstein condensates irradiated by a laser

    Full text link
    A gaseous Bose-Einstein condensate (BEC) irradiated by a far off-resonance laser has long-range interatomic correlations caused by laser-induced dipole-dipole interactions. These correlations, which are tunable via the laser intensity and frequency, can produce a `roton' minimum in the excitation spectrum--behavior reminiscent of the strongly correlated superfluid liquid helium II.Comment: 6 pages, includes 3 figure

    Relativistic nature of a magnetoelectric modulus of Cr_2O_3-crystals: a new 4-dimensional pseudoscalar and its measurement

    Full text link
    Earlier, the magnetoelectric effect of chromium sesquioxide Cr_2O_3 has been determined experimentally as a function of temperature. One measures the electric field-induced magnetization on Cr_2O_3 crystals or the magnetic field-induced polarization. From the magnetoelectric moduli of Cr_2O_3 we extract a 4-dimensional relativistic invariant pseudoscalar α~\widetilde{\alpha}. It is temperature dependent and of the order of 10^{-4}/Z_0, with Z_0 as vacuum impedance. We show that the new pseudoscalar is odd under parity transformation and odd under time inversion. Moreover, α~\widetilde{\alpha} is for Cr_2O_3 what Tellegen's gyrator is for two port theory, the axion field for axion electrodynamics, and the PEMC (perfect electromagnetic conductor) for electrical engineering.Comment: Revtex, 36 pages, 9 figures (submitted in low resolution, better quality figures are available from the authors

    Bivariate genetic modelling of the response to an oral glucose tolerance challenge: A gene x environment interaction approach

    Get PDF
    AIMS/HYPOTHESIS: Twin and family studies have shown the importance of genetic factors influencing fasting and 2 h glucose and insulin levels. However, the genetics of the physiological response to a glucose load has not been thoroughly investigated. METHODS: We studied 580 monozygotic and 1,937 dizygotic British female twins from the Twins UK Registry. The effects of genetic and environmental factors on fasting and 2 h glucose and insulin levels were estimated using univariate genetic modelling. Bivariate model fitting was used to investigate the glucose and insulin responses to a glucose load, i.e. an OGTT. RESULTS: The genetic effect on fasting and 2 h glucose and insulin levels ranged between 40% and 56% after adjustment for age and BMI. Exposure to a glucose load resulted in the emergence of novel genetic effects on 2 h glucose independent of the fasting level, accounting for about 55% of its heritability. For 2 h insulin, the effect of the same genes that already influenced fasting insulin was amplified by about 30%. CONCLUSIONS/INTERPRETATION: Exposure to a glucose challenge uncovers new genetic variance for glucose and amplifies the effects of genes that already influence the fasting insulin level. Finding the genes acting on 2 h glucose independently of fasting glucose may offer new aetiological insight into the risk of cardiovascular events and death from all causes

    Search for the K(L) --> PI0 PI0 E+ E- Decay in the KTeV Experiment

    Full text link
    The recent discovery of a large CP violating asymmetry in K(L) --> PI+ PI- E+ E- mode has prompted us to seach for the associated K(L) --> PI0 PI0 E+ E- decay mode in the KTeV-E799 experiment at Fermilab. In 2.7E+11 K(L) decays, one candidate event has been observed with an expected background of 0.3 event, resulting in an upper limit for the K(L) --> PI0 PI0 E+ E- branching ratio of 6.6E-09 at the 90% confidence level.Comment: To be published in Phys. Rev. Let
    corecore