15 research outputs found

    Differential Brain Perfusion Changes Following Two Mind–Body Interventions for Fibromyalgia Patients:an Arterial Spin Labelling fMRI Study

    Get PDF
    Objectives: Further mechanistic insight on mind–body techniques for fibromyalgia (FMS) is needed. Arterial spin labelling (ASL) imaging can capture changes in regional cerebral blood flow (rCBF) that relate to spontaneous pain. Methods: We recruited FMS patients undergoing either mindfulness-based stress reduction training (MBSR, n = 14) or a psychoeducational programme (FibroQoL, n = 18), and a control FMS group with no add-on treatment (n = 14). We acquired whole-brain rCBF maps and self-report measures at baseline and following treatment and explored interaction effects in brain perfusion between the treatment group and session with a focus on the amygdala, the insula and the anterior cingulate cortex (ACC). Results: We identified a significant interaction effect in the amygdala, which corresponded with rCBF decreases following FibroQoL specifically. At baseline, rCBF in the amygdala for the FibroQoL group correlated with pain catastrophizing and anxiety scores, but not after treatment, suggesting a decoupling between activity in the amygdala and negative emotional symptoms of FMS as a consequence of treatment. Baseline rCBF correlated positively with pain symptoms in the ACC and the anterior insula across all patients; moreover, the correlation between rCBF changes post intervention in the insula and pain improvement was negative for both treatments and significantly different from the control group. We suggest that there is disruption of the typical relationship between clinical pain and activity as a product of these two nonpharmacological therapies. Conclusions: We have demonstrated that different mind-to-body treatments correspond to differential changes in clinical symptoms and brain activity patterns, which encourages future research investigating predictors of treatment response. Trial Registration: NCT02561416.</p

    Reduced inferior fronto-insular-thalamic activation during failed inhibition in young adults with combined ASD and ADHD compared to typically developing and pure disorder groups

    Get PDF
    Abstract Autism spectrum disorder (ASD) often co-occurs with attention-deficit/hyperactivity disorder (ADHD) and people with these conditions have frontostriatal functional atypicality during motor inhibition. We compared the neural and neurocognitive correlates of motor inhibition and performance monitoring in young adult males with “pure” and combined presentations with age-and sex-matched typically developing controls, to explore shared or disorder-specific atypicality. Males aged 20–27 years with typical development (TD; n = 22), ASD (n = 21), combined diagnoses ASD + ADHD (n = 23), and ADHD (n = 25) were compared using a modified tracking fMRI stop-signal task that measures motor inhibition and performance monitoring while controlling for selective attention. In addition, they performed a behavioural go/no-go task outside the scanner. While groups did not differ behaviourally during successful stop trials, the ASD + ADHD group relative to other groups had underactivation in typical performance monitoring regions of bilateral anterior insula/inferior frontal gyrus, right posterior thalamus, and right middle temporal gyrus/hippocampus during failed inhibition, which was associated with increased stop-signal reaction time. In the behavioural go/no-go task, both ADHD groups, with and without ASD, had significantly lower motor inhibition performance compared to TD controls. In conclusion, only young adult males with ASD + ADHD had neurofunctional atypicality in brain regions associated with performance monitoring, while inhibition difficulties on go/no-go task performance was shared with ADHD. The suggests that young people with ASD + ADHD are most severely impaired during motor inhibition tasks compared to ASD and ADHD but do not reflect a combination of the difficulties associated with the pure disorders

    Clinical outcomes and neural correlates of 20 sessions of repetitive transcranial magnetic stimulation in severe and enduring anorexia nervosa (the TIARA study): study protocol for a randomised controlled feasibility trial

    Get PDF
    BACKGROUND: Anorexia nervosa (AN) is a serious mental disorder with multiple comorbidities and complications. In those with a severe and enduring form of the illness (SEED-AN), treatment responsivity is poor and the evidence base limited. Thus, there is a need for novel treatment strategies. This paper describes the theoretical background and protocol of a feasibility randomised controlled trial (RCT) of real versus sham (placebo) therapeutic repetitive transcranial magnetic stimulation (rTMS) in SEED-AN. The aim of this trial is to obtain information that will guide decision making and protocol development in relation to a future large-scale RCT of rTMS in this group of patients, and also to assess the preliminary efficacy and neural correlates of rTMS treatment. DESIGN: Forty-four adults from the community with a DSM-5 diagnosis of AN, an illness duration >3 years and a previous course of unsuccessful treatment will be randomly allocated to receive 20 sessions of either real or sham rTMS, in a parallel group design. As this is a feasibility study, no primary outcome has been defined and a broad range of outcome variables will be examined. These include weight/body mass index (BMI), eating disorder psychopathology, other psychopathology (for example, depression, anxiety), quality of life, neuropsychological processes (such as self-regulation, attentional bias and food choice behaviour), neuroimaging measures (that is, changes in brain structure or function), tolerability and acceptability of rTMS, and additional service utilisation. The feasibility of conducting a large-scale RCT of rTMS and the appropriateness of rTMS as a treatment for SEED-AN will be evaluated through: assessment of recruitment and retention rates, acceptability of random allocation, blinding success (allocation concealment), completion of treatment sessions and research assessments (baseline, post-treatment and follow-up assessments). The acceptability and tolerability of the treatment will be assessed via semi-structured interviews. DISCUSSION: The effect sizes generated and other findings from this trial will inform a future large-scale RCT with respect to decisions on primary outcome measures and other aspects of protocol development. Additionally, results from this study will provide a preliminary indication of the efficacy of rTMS treatment for AN, the neural correlates of the illness, and potential biomarkers of clinical response. TRIAL REGISTRATION: ISRCTN14329415. Date of registration: 23 July 2015. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13063-015-1069-3) contains supplementary material, which is available to authorized users

    Significant Group Ă— Session interaction (p<0.05, corrected) during the anticipation phase of our gambling task (left panel).

    No full text
    <p>To illustrate the nature of the interaction effect, the middle panel shows parameter estimates (in the order placebo at scan 1, placebo at scan 2, AS at scan 1 (before sensitisation), AS at scan 2 (after sensitisation) from the mean response within an associative striatal ROI. The graph on the right shows the correlation between sensitisation-related change in striatal BOLD signal during anticipation and the change in subjective response to amphetamine. All parameter estimates reflect the mean response in arbitrary BOLD units. Results are shown with the standard error of the mean.</p

    Upper Panel: Brain regions identified as displaying sensitivity to the task phases (i.e. decision, anticipation, wins and losses) in the placebo group (left panel).

    No full text
    <p>Parameter estimates for key dopaminergic and reward-related areas showing a significant main effect of task (right panel). Lower Panel: Brain regions where BOLD signal was modulated by reward probability the placebo group (left panel). Parameter estimates from the occipital cortex and precuneus, regions that display a significant main effect of reward probability. All parameter estimates reflect the mean response in arbitrary BOLD units. Results are shown with the standard error of the mean.</p
    corecore