7,476 research outputs found

    Evidence for nonlinear diffusive shock acceleration of cosmic-rays in the 2006 outburst of the recurrent nova RS Ophiuchi

    Full text link
    Spectroscopic observations of the 2006 outburst of the recurrent nova RS Ophiuchi at both infrared (IR) and X-ray wavelengths have shown that the blast wave has decelerated at a higher rate than predicted by the standard test-particle adiabatic shock-wave model. Here we show that the observed evolution of the nova remnant can be explained by the diffusive shock acceleration of particles at the blast wave and the subsequent escape of the highest energy ions from the shock region. Nonlinear particle acceleration can also account for the difference of shock velocities deduced from the IR and X-ray data. The maximum energy that accelerated electrons and protons can have achieved in few days after outburst is found to be as high as a few TeV. Using the semi-analytic model of nonlinear diffusive shock acceleration developed by Berezhko & Ellison, we show that the postshock temperature of the shocked gas measured with RXTE/PCA and Swift/XRT imply a relatively moderate acceleration efficiency.Comment: Accepted for publication in ApJ

    Dynamics of the Lyman alpha and C IV emitting gas in 3C 273

    Full text link
    In this paper we study the variability properties of the Lyman alpha and C IV emission lines in 3C273 using archival IUE observations. Our data show for the first time the existence of variability on time scales of several years. We study the spatial distribution and the velocity field of the emitting gas by performing detailed analyses on the line variability using correlations, 1D and 2D response functions, and principal component analysis. In both lines we find evidence for two components, one which has the dynamic properties of gas in Keplerian motion around a black hole with a mass of the order of 10^9 Mo, and one which is characterized by high, blue-shifted velocities at large lag. There is no indication of the presence of optically thick emission medium neither in the Lya, nor in the Civ response functions. The component characterized by blue-shifted velocities, which is comparatively much stronger in Civ than in Lya, is more or less compatible with being the result of gas falling towards the central black hole with free-fall acceleration. We propose however that the line emission at high, blue-shifted velocities is better explained in terms of entrainment of gas clouds by the jet. This gas is therefore probably collisionally excited as a result of heating due to the intense infrared radiation from the jet, which would explain the strength of this component in Civ relative to Lya. This phenomenon might be a signature of disk-jet interaction.Comment: 16 pages, 10 figures. Accepted for publication in ApJ. Uses aaste

    Occupant aspects of building energy codes and standards: An international review

    Get PDF
    Occupants are recipients of building services, and they have direct influence on building operation and performance. However, they are often addressed in simplified ways in building energy codes and standards that do not reflect the latest knowledge and scientific literature. This article describes an international review the authors performed on 23 regions’ building energy codes and standards. It took two approaches: one quantitative focused on comparing occupant-related schedules, densities and other values and one qualitative that analyzed written requirements

    Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: I. Early X-ray emission from the shocked ejecta and red giant wind

    Get PDF
    RS Ophiuchi began its latest outburst on 2006 February 12. Previous outbursts have indicated that high velocity ejecta interact with a pre-existing red giant wind, setting up shock systems analogous to those seen in Supernova Remnants. However, in the previous outburst in 1985, X-ray observations did not commence until 55 days after the initial explosion. Here we report on Swift observations covering the first month of the 2006 outburst with the Burst Alert (BAT) and X-ray Telescope (XRT) instruments. RS Oph was clearly detected in the BAT 14-25 keV band from t=0 to t6t\sim6 days. XRT observationsfrom 0.3-10 keV, started at 3.17 days after outburst. The rapidly evolving XRT spectra clearly show the presence of both line and continuum emission which can be fitted by thermal emission from hot gas whose characteristic temperature, overlying absorbing column, [NH]W[N_H]_W, and resulting unabsorbed total flux decline monotonically after the first few days. Derived shock velocities are in good agreement with those found from observations at other wavelengths. Similarly, [NH]W[N_H]_W is in accord with that expected from the red giant wind ahead of the forward shock. We confirm the basic models of the 1985 outburst and conclude that standard Phase I remnant evolution terminated by t10t\sim10 days and the remnant then rapidly evolved to display behaviour characteristic of Phase III. Around t=26 days however, a new, luminous and highly variable soft X-ray source began to appear whose origin will be explored in a subsequent paper.Comment: 20 pages, 4 figures (2 updated), accepted by Ap

    Lens or Binary? Chandra Observations of the Wide Separation Broad Absorption Line Quasar Pair UM425

    Full text link
    We have obtained a 110 ksec Chandra ACIS-S exposure of UM425, a pair of QSOs at z=1.47 separated by 6.5 arcsec, which show remarkably similar emission and broad absorption line (BAL) profiles in the optical/UV. Our 5000 count X-ray spectrum of UM425A (the brighter component) is well-fit with a power law (photon spectral index Gamma=2.0) partially covered by a hydrogen column of 3.8x10^22 cm^-2. The underlying power-law slope for this object and for other recent samples of BALQSOs is typical of radio-quiet quasars, lending credence to the hypothesis that BALs exist in every quasar. Assuming the same Gamma for the much fainter image of UM425B, we detect an obscuring column 5 times larger. We search for evidence of an appropriately large lensing mass in our Chandra image and find weak diffuse emission near the quasar pair, with an X-ray flux typical of a group of galaxies at redshift z ~ 0.6. From our analysis of archival HST WFPC2 and NICMOS images, we find no evidence for a luminous lensing galaxy, but note a 3-sigma excess of galaxies in the UM425 field with plausible magnitudes for a z=0.6 galaxy group. However, the associated X-ray emission does not imply sufficient mass to produce the observed image splitting. The lens scenario thus requires a dark (high M/L ratio) lens, or a fortuitous configuration of masses along the line of sight. UM425 may instead be a close binary pair of BALQSOs, which would boost arguments that interactions and mergers increase nuclear activity and outflows.Comment: 13 pages, 9 figures, Accepted for publication in the Astrophysical Journa

    GMRT Observations of the 2006 outburst of the Nova RS Ophiuchi: First detection of emission at radio frequencies < 1.4 GHz

    Full text link
    The first low radio frequency (<1.4 GHz) detection of the outburst of the recurrent nova RS Ophiuchi is presented in this letter. Radio emission was detected at 0.61 GHz on day 20 with a flux density of ~48 mJy and at 0.325 GHz on day 38 with a flux density of ~ 44 mJy. This is in contrast with the 1985 outburst when it was not detected at 0.327 GHz even on day 66. The emission at low radio frequencies is clearly non-thermal and is well-explained by a synchrotron spectrum of index alpha ~ -0.8 (S propto nu^alpha) suffering foreground absorption due to the pre-existing, ionized, warm, clumpy red giant wind. The absence of low frequency radio emission in 1985 and the earlier turn-on of the radio flux in the current outburst are interpreted as being due to higher foreground absorption in 1985 compared to that in 2006, suggesting that the overlying wind densities in 2006 are only ~30% of those in 1985.Comment: 14 pages, 1 figure. Accepted for publication in ApJ

    Hubble Space Telescope Imaging of the Expanding Nebular Remnant of the Recurrent Nova RS Ophiuchi (2006)

    Full text link
    We report Hubble Space Telescope imaging obtained 155 days after the 2006 outburst of RS Ophiuchi. We detect extended emission in both [O III] and [Ne V] lines. In both lines, the remnant has a double ring structure. The E-W orientation and total extent of these structures (580+-50 AU at d=1.6kpc) is consistent with that expected due to expansion of emitting regions imaged earlier in the outburst at radio wavelengths. Expansion at high velocity appears to have been roughly constant in the E-W direction (v_{exp} = 3200+-300 km/s in the plane of the sky), with tentative evidence of deceleration N-S. We present a bipolar model of the remnant whose inclination is consistent with that of the central binary. The true expansion velocities of the polar components are then v = 5600+-1100 km/s. We suggest that the bipolar morphology of the remnant results from interaction of the outburst ejecta with a circumstellar medium that is significantly denser in the equatorial regions of the binary than at the poles. This is also consistent with observations of shock evolution in the X-ray and the possible presence of dust in the infrared. Furthermore, it is in line with models of the shaping of planetary nebulae with close binary central systems, and also with recent observations relating to the progenitors of Type Ia supernovae, for which recurrent novae are a proposed candidate. Our observations also reveal more extended structures to the S and E of the remnant whose possible origin is briefly discussed.Comment: 13 pages, 2 figures, accepted for publication in ApJ

    Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: II. 1D hydrodynamical models of wind driven shocks

    Full text link
    Following the early Swift X-ray observations of the latest outburst of the recurrent nova RS Ophiuchi in February 2006 (Paper I), we present new 1D hydrodynamical models of the system which take into account all three phases of the remnant evolution. The models suggest a novel way of modelling the system by treating the outburst as a sudden increase then decrease in wind mass-loss rate and velocity. The differences between this wind model and previous Primakoff-type simulations are described. A more complex structure, even in 1D, is revealed through the presence of both forward and reverse shocks, with a separating contact discontinuity. The effects of radiative cooling are investigated and key outburst parameters such as mass-loss rate, ejecta velocity and mass are varied. The shock velocities as a function of time are compared to the ones derived in Paper I. We show how the manner in which the matter is ejected controls the evolution of the shock and that for a well-cooled remnant, the shock deceleration rate depends on the amount of energy that is radiated away.Comment: 9 pages, 5 figure

    High-Resolution Keck Spectra of the Associated Absorption Lines in 3C 191

    Get PDF
    Associated absorption lines (AALs) are valuable probes of the gaseous environments near quasars. Here we discuss high-resolution (6.7 km/s) spectra of the AALs in the radio-loud quasar 3C 191 (redshift z=1.956). The measured AALs have ionizations ranging from Mg I to N V, and multi-component profiles that are blueshifted by ~400 to ~1400 km/s relative to the quasar's broad emission lines. These data yield the following new results. 1) The density based on Si II*/Si II lines is ~300 cm-3, implying a distance of ~28 kpc from the quasar if the gas is photoionized. 2) The characteristic flow time is thus \~3 x 10^7 yr. 3) Strong Mg I AALs identify neutral gas with very low ionization parameter and high density. We estimate n_H > 5 x 10^4 cm-3 in this region, compared to ~15 cm-3 where the N V lines form. 4) The total column density is N_H < 4 x 10^18 cm-2 in the neutral gas and N_H ~ 2 x 10^20 cm-2 in the moderately ionized regions. 5) The total mass in the AAL outflow is M ~ 2 x 10^9 Mo, assuming a global covering factor (as viewed from the quasar) of ~10% >. 6) The absorbing gas only partially covers the background light source(s) along our line(s) of sight, requiring absorption in small clouds or filaments <0.01 pc across. The ratio N_H/n_H implies that the clouds have radial (line- of-sight) thicknesses <0.2 pc. These properties might characterize a sub-class of AALs that are physically related to quasars but form at large distances. We propose a model for the absorber in which pockets of dense neutral gas are surrounded by larger clouds of generally lower density and higher ionization. This outflowing material might be leftover from a blowout associated with a nuclear starburst, the onset of quasar activity or a past broad absorption line (BAL) wind phase.Comment: 15 pages text plus 6 figures, in press with Ap
    corecore