6,140 research outputs found

    Improving thermal and electrical efficiency in photovoltaic thermal systems for sustainable cooling system integration

    Get PDF
    Research into photovoltaic thermal systems is important in solar technologies as photovoltaic thermal systems are designed to produce both electrical and thermal energy, this can lead to improved performance of the overall system. The performance of photovoltaic thermal systems is based on several factors that include photovoltaic thermal materials, design, ambient temperature, inlet and outlet fluid temperature and photovoltaic cell temperature. The aim of this study is to investigate the effect of photovoltaic thermal outlet water temperatures and solar cell temperature on both electrical and thermal efficiency for different range of inlet water temperature. To achieve this, a mathematical model of a photovoltaic thermal system was developed to calculate the anticipated system performance. The factors that affect the efficiency of photovoltaic thermal collectors were discussed and the outlet fluid temperature from the photovoltaic thermal is investigated in order to reach the highest overall efficiency for the solar cooling system. An average thermal and electrical efficiency of 65% and 13.7%, respectively, was achieved and the photovoltaic thermal mathematical model was validated with experimental data from literature

    Accuracy of Trace Formulas

    Full text link
    Using quantum maps we study the accuracy of semiclassical trace formulas. The role of chaos in improving the semiclassical accuracy, in some systems, is demonstrated quantitatively. However, our study of the standard map cautions that this may not be most general. While studying a sawtooth map we demonstrate the rather remarkable fact that at the level of the time one trace even in the presence of fixed points on singularities the trace formula may be exact, and in any case has no logarithmic divergences observed for the quantum bakers map. As a byproduct we introduce fantastic periodic curves akin to curlicues.Comment: 20 pages, uuencoded and gzipped, 1 LaTex text file and 9 PS files for figure

    Derivation of tropospheric methane from TCCON CHâ‚„ and HF total column observations

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is a global ground-based network of Fourier transform spectrometers that produce precise measurements of column-averaged dry-air mole fractions of atmospheric methane (CHâ‚„). Temporal variability in the total column of CHâ‚„ due to stratospheric dynamics obscures fluctuations and trends driven by tropospheric transport and local surface fluxes that are critical for understanding CHâ‚„ sources and sinks. We reduce the contribution of stratospheric variability from the total column average by subtracting an estimate of the stratospheric CHâ‚„ derived from simultaneous measurements of hydrogen fluoride (HF). HF provides a proxy for stratospheric CHâ‚„ because it is strongly correlated to CHâ‚„ in the stratosphere, has an accurately known tropospheric abundance (of zero), and is measured at most TCCON stations. The stratospheric partial column of CHâ‚„ is calculated as a function of the zonal and annual trends in the relationship between CHâ‚„ and HF in the stratosphere, which we determine from ACE-FTS satellite data. We also explicitly take into account the CHâ‚„ column averaging kernel to estimate the contribution of stratospheric CHâ‚„ to the total column. The resulting tropospheric CHâ‚„ columns are consistent with in situ aircraft measurements and augment existing observations in the troposphere

    Randomized phase II study of fulvestrant plus palbociclib or placebo in endocrine-sensitive, hormone receptor-positive/HER2–advanced breast cancer: GEICAM/2014–12 (FLIPPER)

    Get PDF
    Background The potential benefit of adding palbociclib to fulvestrant as first-line treatment in hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative endocrine-sensitive advanced breast cancer (ABC) patients remains uncharacterized. Patients and methods In this randomized (1:1), double-blind, phase II study, postmenopausal women with HR-positive, HER2-negative ABC with de novo metastatic disease or those who relapsed after >12 months of adjuvant endocrine therapy received palbociclib/fulvestrant or placebo/fulvestrant. Stratification was based on recurrent versus de novo metastatic disease and visceral involvement. The primary objective was one-year progression-free survival (PFS-1y) rate. The sample size was 190 patients. The two-sided alpha of 0.2, 80% of power to detect a difference between the arms, assuming PFS rates of 0.695 and 0.545 for palbociclib/fulvestrant and placebo/fulvestrant, respectively. Results In total, 189 patients were randomized to palbociclib/fulvestrant ([n = 94] or placebo/fulvestrant [n = 95]). 45.5% and 60.3% of patients had de novo metastatic disease and visceral involvement, respectively. PFS-1y rates were 83.5% and 71.9% in the palbociclib/fulvestrant and placebo/fulvestrant arms, (HR 0.55, 80% CI 0.36–0.83, P = 0.064). The median PFS were 31.8 and 22.0 months for the palbociclib/fulvestrant and placebo/fulvestrant arms (aHR 0.48, 80% CI 0.37–0.64, P = 0.001). The most frequent grade 3–4 adverse events were neutropenia (68.1% vs. 0%), leucopenia (26.6% vs. 0%), anemia (3.2% vs. 0%), and lymphopenia (14.9% vs. 2.1%) for the palbociclib/fulvestrant and placebo/fulvestrant, respectively. The most frequent non-hematologic grade 3–4 adverse event was fatigue (4.3% vs. 0%). Conclusions Palbociclib/fulvestrant demonstrated better PFS-1y rates and median PFS than placebo/fulvestrant in HR-positive/HER2-negative endocrine-sensitive ABC patients

    Review of "Proteins of the Cerebrospinal Fluid" (2(nd )Edition) by Edward J. Thompson

    Get PDF
    This book on cerebrospinal fluid (CSF) proteins is primarily focused on immunoglobulins. The book was written as an extension of a meeting on multiple sclerosis to provide a more extensive consideration of the CSF

    Statistical Mechanics for Unstable States in Gel'fand Triplets and Investigations of Parabolic Potential Barriers

    Full text link
    Free energies and other thermodynamical quantities are investigated in canonical and grand canonical ensembles of statistical mechanics involving unstable states which are described by the generalized eigenstates with complex energy eigenvalues in the conjugate space of Gel'fand triplet. The theory is applied to the systems containing parabolic potential barriers (PPB's). The entropy and energy productions from PPB systems are studied. An equilibrium for a chemical process described by reactions A+CB⇄AC+BA+CB\rightleftarrows AC+B is also discussed.Comment: 14 pages, AmS-LaTeX, no figur

    Semiclassical ionization dynamics of the hydrogen molecular ion in an electric field of arbitrary orientation

    Full text link
    Quasi-static models of barrier suppression have played a major role in our understanding of the ionization of atoms and molecules in strong laser fields. Despite their success, in the case of diatomic molecules these studies have so far been restricted to fields aligned with the molecular axis. In this paper we investigate the locations and heights of the potential barriers in the hydrogen molecular ion in an electric field of arbitrary orientation. We find that the barriers undergo bifurcations as the external field strength and direction are varied. This phenomenon represents an unexpected level of intricacy even on this most elementary level of the dynamics. We describe the dynamics of tunnelling ionization through the barriers semiclassically and use our results to shed new light on the success of a recent theory of molecular tunnelling ionization as well as earlier theories that restrict the electric field to be aligned with the molecular axis
    • …
    corecore