120 research outputs found

    Asset Prices in the Measurement of Inflation

    Get PDF
    The debate over including asset prices in the construction of an inflation statistic has attracted renewed attention in recent years. Virtually all of this (and earlier) work on incorporating asset prices into an aggregate price statistic has been motivated by a presumed, but unidentified transmission mechanism through which asset prices are leading indicators of inflation at the retail level. This paper takes an alternative, longer-term perspective on the issue and argues that the exclusion of asset prices introduces an excluded goods bias in the computation of the inflation statistic that is of interest to the monetary authority. This idea is implemented using a relatively modern statistical technique, a dynamic factor index. This statistical algorithm allows researchers to see through the excessively noisy asset price data that have frustrated earlier researchers who have attempted to integrate these prices into an aggregate measure

    Formaldehyde over North America and the North Atlantic during the summer 2004 INTEX campaign: Methods, observed distributions, and measurement‐model comparisons

    Get PDF
    A tunable diode laser absorption spectrometer (TDLAS) was operated on the NASA DC‐8 aircraft during the summer INTEX‐NA study to acquire ambient formaldehyde (CH2O) measurements over North America and the North Atlantic Ocean from ∼0.2 km to ∼12.5 km altitude spanning 17 science flights. Measurements of CH2O in the boundary layer and upper troposphere over the southeastern United States were anomalously low compared to studies in other years, and this was attributed to the record low temperatures over this region during the summer of 2004. Formaldehyde is primarily formed over the southeast from isoprene, and isoprene emissions are strongly temperature‐dependent. Despite this effect, the median upper tropospheric (UT) CH2O mixing ratio of 159 pptv from the TDLAS over continental North America is about a factor of 4 times higher than the median UT value of 40 pptv observed over remote regions during TRACE‐P. These observations together with the higher variability observed in this study all point to the fact that continental CH2O levels in the upper troposphere were significantly perturbed during the summer of 2004 relative to more typical background levels in the upper troposphere over more remote regions. The TDLAS measurements discussed in this paper are employed together with box model results in the companion paper by Fried et al. to further examine enhanced CH2O distributions in the upper troposphere due to convection. Measurements of CH2O on the DC‐8 were also acquired by a coil enzyme fluorometric system and compared with measurements from the TDLAS system

    Next-Generation Sequencing of HIV-1 Single Genome Amplicons

    Get PDF
    The analysis of HIV-1 sequences has helped understand the viral molecular epidemiology, monitor the development of antiretroviral drug resistance, and design candidate vaccines. The introduction of single genome amplification (SGA) has been a major advancement in the field, allowing for the characterization of multiple sequences per patient while preserving linkage among polymorphisms in the same viral genome copy. Sequencing of SGA amplicons is performed by capillary Sanger sequencing, which presents low throughput, requires a high amount of template, and is highly sensitive to template/primer mismatching. In order to meet the increasing demand for HIV-1 SGA amplicon sequencing, we have developed a platform based on benchtop next-generation sequencing (NGS) (IonTorrent) accompanied by a bioinformatics pipeline capable of running on computer resources commonly available at research laboratories. During assay validation, the NGS-based sequencing of 10 HIV-1 env SGA amplicons was fully concordant with Sanger sequencing. The field test was conducted on plasma samples from 10 US Navy and Marine service members with recent HIV-1 infection (sampling interval: 2005-2010; plasma viral load: 5,884-194,984 copies/ml). The NGS analysis of 101 SGA amplicons (median: 10 amplicons/individual) showed within-individual viral sequence profiles expected in individuals at this disease stage, including individuals with highly homogeneous quasispecies, individuals with two highly homogeneous viral lineages, and individuals with heterogeneous viral populations. In a scalability assessment using the Ion Chef automated system, 41/43 tested env SGA amplicons (95%) multiplexed on a single Ion 318 chip showed consistent gene-wide coverage \u3e50×. With lower sample requirements and higher throughput, this approach is suitable to support the increasing demand for high-quality and cost-effective HIV-1 sequences in fields such as molecular epidemiology, and development of preventive and therapeutic strategies

    Global Carbon Budget 2022

    Get PDF
    Accurate assessment of anthropogenic carbon dioxide (CO2_2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2_2 emissions (EFOS_{FOS}) are based on energy statistics and cement production data, while emissions from land-use change (ELUC_{LUC}), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2_2 concentration is measured directly, and its growth rate (GATM_{ATM}) is computed from the annual changes in concentration. The ocean CO2_2 sink (SOCEAN_{OCEAN}) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2_2 sink (SLAND_{LAND}) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM_{IM}), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2021, EFOS_{FOS} increased by 5.1 % relative to 2020, with fossil emissions at 10.1 ± 0.5 GtC yr1^{−1} (9.9 ± 0.5 GtC yr1^{−1} when the cement carbonation sink is included), and ELUC_{LUC} was 1.1 ± 0.7 GtC yr1^{−1}, for a total anthropogenic CO2_2 emission (including the cement carbonation sink) of 10.9 ± 0.8 GtC yr1^{−1} (40.0 ± 2.9 GtCO2_2). Also, for 2021, GATM_{ATM} was 5.2 ± 0.2 GtC yr1^{−1} (2.5 ± 0.1 ppm yr1^{−1}), SOCEAN_{OCEAN} was 2.9  ± 0.4 GtC yr1^{−1}, and SLAND_{LAND} was 3.5 ± 0.9 GtC yr1^{−1}, with a BIM_{IM} of −0.6 GtC yr1^{−1} (i.e. the total estimated sources were too low or sinks were too high). The global atmospheric CO2_2 concentration averaged over 2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022 suggest an increase in EFOS_{FOS} relative to 2021 of +1.0 % (0.1 % to 1.9 %) globally and atmospheric CO2_2 concentration reaching 417.2 ppm, more than 50 % above pre-industrial levels (around 278 ppm). Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2021, but discrepancies of up to 1 GtC yr1^{−1} persist for the representation of annual to semi-decadal variability in CO2_2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) a low agreement between the different methods on the magnitude of the land CO2_2 flux in the northern extratropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set. The data presented in this work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b)

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Global Carbon Budget 2021

    Get PDF

    Sensitivity studies for the IceCube-Gen2 radio array

    Get PDF

    A next-generation optical sensor for IceCube-Gen2

    Get PDF

    The Surface Array planned for IceCube-Gen2

    Get PDF
    IceCube-Gen2, the extension of the IceCube Neutrino Observatory, will feature three main components: an optical array in the deep ice, a large-scale radio array in the shallow ice and firn, and a surface detector above the optical array. Thus, IceCube-Gen2 will not only be an excellent detector for PeV neutrinos, but also constitutes a unique setup for the measurement of cosmic-ray air showers, where the electromagnetic component and low-energy muons are measured at the surface and high-energy muons are measured in the ice. As for ongoing enhancement of IceCube’s current surface array, IceTop, we foresee a combination of elevated scintillation and radio detectors for the Gen2 surface array, aiming at high measurement accuracy for air showers. The science goals are manifold: The in-situ measurement of the cosmic-ray flux and mass composition, as well as more thorough tests of hadronic interaction models, will improve the understanding of muons and atmospheric neutrinos detected in the ice, in particular, regarding prompt muons. Moreover, the surface array provides a cosmic-ray veto for the in-ice detector and contributes to the calibration of the optical and radio arrays. Last but not least, the surface array will make major contributions to cosmic-ray science in the energy range of the transition from Galactic to extragalactic sources. The increased sensitivities for photons and for cosmic-ray anisotropies at multi-PeV energies provide a chance to solve the puzzle of the origin of the most energetic Galactic cosmic rays and will serve IceCube’s multimessenger mission
    corecore