10 research outputs found

    Identifying Candidate Genes for Variation in Sleep-Related Quantitative Traits

    Get PDF
    Background Humans spend approximately one third of their lives sleeping, but compared with other biological processes, most of the molecular and genetic aspects of sleep have not been elucidated. A non-existent gene ontology and lack of a dedicated database containing a comprehensive list of sleep-related genes and their function presents a hurdle for sleep researchers. Materials and methods Using a two-pronged approach to solve this problem, publicly available microarray data from NCBI GEO (National Center for Biotechnology Information – Gene Expression Omnibus) database was used to develop a list of sleep-related genes for traits of interest. The data were analyzed using R Bioconductor and custom Perl scripts. The genes from this list were then matched with the genes in QTL (Quantitative Trait Loci) for the trait. The genes within the QTL chromosomal region matching any in the list of sleep-related genes were considered as potential candidates for causing variations in the quantitative trait. Results Here we present the results for our study conducted for sleep deprivation (SD) using this approach. 227 genes were identified which showed significant differential expression after 3, 6, 9 and 12 hours of sleep deprivation in three mouse strains. We were able to identify 4 candidate genes in Dps1 QTL, 2 in Dps2, and 9 genes in Dps3. Dps loci are the QTL associated with delta power in slow wave sleep. The list also contains Homer1 which has already been established as a molecular correlate of sleep loss. The advantage with this approach is that it provides more information and cross support than a simple list of sleep-related candidate genes. The association of information about genes with their function and role in sleep can help in forming sleep-specific gene ontologies, which would be useful for sleep researchers

    Meditation acutely improves psychomotor vigilance, and may decrease sleep need

    Get PDF
    BACKGROUND: A number of benefits from meditation have been claimed by those who practice various traditions, but few have been well tested in scientifically controlled studies. Among these claims are improved performance and decreased sleep need. Therefore, in these studies we assess whether meditation leads to an immediate performance improvement on a well validated psychomotor vigilance task (PVT), and second, whether longer bouts of meditation may alter sleep need. METHODS: The primary study assessed PVT reaction times before and after 40 minute periods of mediation, nap, or a control activity using a within subject cross-over design. This study utilized novice meditators who were current university students (n = 10). Novice meditators completed 40 minutes of meditation, nap, or control activities on six different days (two separate days for each condition), plus one night of total sleep deprivation on a different night, followed by 40 minutes of meditation.A second study examined sleep times in long term experienced meditators (n = 7) vs. non-meditators (n = 23). Experienced meditators and controls were age and sex matched and living in the Delhi region of India at the time of the study. Both groups continued their normal activities while monitoring their sleep and meditation times. RESULTS: Novice meditators were tested on the PVT before each activity, 10 minutes after each activity and one hour later. All ten novice meditators improved their PVT reaction times immediately following periods of meditation, and all but one got worse immediately following naps. Sleep deprivation produced a slower baseline reaction time (RT) on the PVT that still improved significantly following a period of meditation. In experiments with long-term experienced meditators, sleep duration was measured using both sleep journals and actigraphy. Sleep duration in these subjects was lower than control non-meditators and general population norms, with no apparent decrements in PVT scores. CONCLUSIONS: These results suggest that meditation provides at least a short-term performance improvement even in novice meditators. In long term meditators, multiple hours spent in meditation are associated with a significant decrease in total sleep time when compared with age and sex matched controls who did not meditate. Whether meditation can actually replace a portion of sleep or pay-off sleep debt is under further investigation

    The effects of aging on sleep parameters in a healthy, melatonin-competent mouse model

    Get PDF
    Background: Sleep disturbances are common maladies associated with human age. Sleep duration is decreased, sleep fragmentation is increased, and the timing of sleep onset and sleep offset is earlier. These disturbances have been associated with several neurodegenerative diseases. Mouse models for human sleep disturbances can be powerful due to the accessibility to neuroscientific and genetic approaches, but these are hampered by the fact that most mouse models employed in sleep research have spontaneous mutations in the biosynthetic pathway(s) regulating the rhythmic production of the pineal hormone melatonin, which has been implicated in human sleep. Purpose and method: The present study employed a non-invasive piezoelectric measure of sleep wake cycles in young, middle-aged and old CBA mice, a strain capable of melatonin biosynthesis, to investigate naturally-occurring changes in sleep and circadian parameters as the result of aging. Results: The results indicate that young mice sleep less than do middle-aged or aged mice, especially during the night, while the timing of activity onset and acrophase is delayed in aged mice compared to younger mice. Conclusion: These data point to an effect of aging on the quality and timing of sleep in these mice but also that there are fundamental differences between control of sleep in humans and in laboratory mice

    Diffuse Brain Injury Induces Acute Post-Traumatic Sleep

    Get PDF
    Objective Clinical observations report excessive sleepiness immediately following traumatic brain injury (TBI); however, there is a lack of experimental evidence to support or refute the benefit of sleep following a brain injury. The aim of this study is to investigate acute post-traumatic sleep. Methods Sham, mild or moderate diffuse TBI was induced by midline fluid percussion injury (mFPI) in male C57BL/6J mice at 9:00 or 21:00 to evaluate injury-induced sleep behavior at sleep and wake onset, respectively. Sleep profiles were measured post-injury using a non-invasive, piezoelectric cage system. In separate cohorts of mice, inflammatory cytokines in the neocortex were quantified by immunoassay, and microglial activation was visualized by immunohistochemistry. Results Immediately after diffuse TBI, quantitative measures of sleep were characterized by a significant increase in sleep (\u3e50%) for the first 6 hours post-injury, resulting from increases in sleep bout length, compared to sham. Acute post-traumatic sleep increased significantly independent of injury severity and time of injury (9:00 vs 21:00). The pro-inflammatory cytokine IL-1β increased in brain-injured mice compared to sham over the first 9 hours post-injury. Iba-1 positive microglia were evident in brain-injured cortex at 6 hours post-injury. Conclusion Post-traumatic sleep occurs for up to 6 hours after diffuse brain injury in the mouse regardless of injury severity or time of day. The temporal profile of secondary injury cascades may be driving the significant increase in post-traumatic sleep and contribute to the natural course of recovery through cellular repair

    A comparative study of sleep and diurnal patterns in house mouse (Mus musculus) and spiny mouse (Acomys cahirinus)

    Get PDF
    Most published sleep studies use three species: human, house mouse, or Norway rat. The degree to which data from these species captures variability in mammalian sleep remains unclear. To gain insight into mammalian sleep diversity, we examined sleep architecture in the spiny basal murid rodent Acomys cahirinus. First, we used a piezoelectric system validated for Mus musculus to monitor sleep in both species. We also included wild M. musculus to control for alterations generated by laboratory-reared conditions for M. musculus. Using this comparative framework, we found that A. cahirinus, lab M. musculus, and wild M. musculus were primarily nocturnal, but exhibited distinct behavioral patterns. Although the activity of A. cahirinus increased sharply at dark onset, it decreased sharply just two hours later under group and individual housing conditions. To further characterize sleep patterns and sleep-related variables, we set up EEG/EMG and video recordings and found that A. cahirinus sleep significantly more than M. musculus, exhibit nearly three times more REM, and sleep almost exclusively with their eyes open. The observed differences in A. cahirinus sleep architecture raise questions about the evolutionary drivers of sleep behavior

    Novel TNF Receptor-1 Inhibitors Identified as Potential Therapeutic Candidates for Traumatic Brain Injury

    Get PDF
    Background: Traumatic brain injury (TBI) begins with the application of mechanical force to the head or brain, which initiates systemic and cellular processes that are hallmarks of the disease. The pathological cascade of secondary injury processes, including inflammation, can exacerbate brain injury-induced morbidities and thus represents a plausible target for pharmaceutical therapies. We have pioneered research on post-traumatic sleep, identifying that injury-induced sleep lasting for 6 h in brain-injured mice coincides with increased cortical levels of inflammatory cytokines, including tumor necrosis factor (TNF). Here, we apply post-traumatic sleep as a physiological bio-indicator of inflammation. We hypothesized the efficacy of novel TNF receptor (TNF-R) inhibitors could be screened using post-traumatic sleep and that these novel compounds would improve functional recovery following diffuse TBI in the mouse. Methods: Three inhibitors of TNF-R activation were synthesized based on the structure of previously reported TNF CIAM inhibitor F002, which lodges into a defined TNFR1 cavity at the TNF-binding interface, and screened for in vitro efficacy of TNF pathway inhibition (IκB phosphorylation). Compounds were screened for in vivo efficacy in modulating post-traumatic sleep. Compounds were then tested for efficacy in improving functional recovery and verification of cellular mechanism. Results: Brain-injured mice treated with Compound 7 (C7) or SGT11 slept significantly less than those treated with vehicle, suggesting a therapeutic potential to target neuroinflammation. SGT11 restored cognitive, sensorimotor, and neurological function. C7 and SGT11 significantly decreased cortical inflammatory cytokines 3 h post-TBI. Conclusions: Using sleep as a bio-indicator of TNF-R-dependent neuroinflammation, we identified C7 and SGT11 as potential therapeutic candidates for TBI

    A Comparative Study of Sleep and Diurnal Patterns in House Mouse (\u3cem\u3eMus musculus\u3c/em\u3e) and Spiny Mouse (\u3cem\u3eAcomys cahirinus\u3c/em\u3e)

    Get PDF
    Most published sleep studies use three species: human, house mouse, or Norway rat. The degree to which data from these species captures variability in mammalian sleep remains unclear. To gain insight into mammalian sleep diversity, we examined sleep architecture in the spiny basal murid rodent Acomys cahirinus. First, we used a piezoelectric system validated for Mus musculus to monitor sleep in both species. We also included wild M. musculus to control for alterations generated by laboratory-reared conditions for M. musculus. Using this comparative framework, we found that A. cahirinus, lab M. musculus, and wild M. musculus were primarily nocturnal, but exhibited distinct behavioral patterns. Although the activity of A. cahirinus increased sharply at dark onset, it decreased sharply just two hours later under group and individual housing conditions. To further characterize sleep patterns and sleep-related variables, we set up EEG/EMG and video recordings and found that A. cahirinus sleep significantly more than M. musculus, exhibit nearly three times more REM, and sleep almost exclusively with their eyes open. The observed differences in A. cahirinus sleep architecture raise questions about the evolutionary drivers of sleep behavior

    Genetic variation regulates opioid-induced respiratory depression in mice.

    Get PDF
    In the U.S., opioid prescription for treatment of pain nearly quadrupled from 1999 to 2014. The diversion and misuse of prescription opioids along with increased use of drugs like heroin and fentanyl, has led to an epidemic in addiction and overdose deaths. The most common cause of opioid overdose and death is opioid-induced respiratory depression (OIRD), a life-threatening depression in respiratory rate thought to be caused by stimulation of opioid receptors in the inspiratory-generating regions of the brain. Studies in mice have revealed that variation in opiate lethality is associated with strain differences, suggesting that sensitivity to OIRD is genetically determined. We first tested the hypothesis that genetic variation in inbred strains of mice influences the innate variability in opioid-induced responses in respiratory depression, recovery time and survival time. Using the founders of the advanced, high-diversity mouse population, the Diversity Outbred (DO), we found substantial sex and genetic effects on respiratory sensitivity and opiate lethality. We used DO mice treated with morphine to map quantitative trait loci for respiratory depression, recovery time and survival time. Trait mapping and integrative functional genomic analysis in GeneWeaver has allowed us to implicate Galnt11, an N-acetylgalactosaminyltransferase, as a gene that regulates OIRD

    Effects of the Dual Orexin Receptor Antagonist DORA-22 on Sleep in 5XFAD Mice

    Get PDF
    Introduction: Sleep disruption is a characteristic of Alzheimer\u27s disease (AD) that may exacerbate disease progression. This study tested whether a dual orexin receptor antagonist (DORA) would enhance sleep and attenuate neuropathology, neuroinflammation, and cognitive deficits in an AD-relevant mouse model, 5XFAD. Methods: Wild-type (C57Bl6/SJL) and 5XFAD mice received chronic treatment with vehicle or DORA-22. Piezoelectric recordings monitored sleep and spatial memory was assessed via spontaneous Y-maze alternations. Aβ plaques, Aβ levels, and neuroinflammatory markers were measured by immunohistochemistry, enzyme-linked immunosorbent assay, and real-time polymerase chain reaction, respectively. Results: In 5XFAD mice, DORA-22 significantly increased light-phase sleep without reducing Aβ levels, plaque density, or neuroinflammation. Effects of DORA-22 on cognitive deficits could not be determined because the 5XFAD mice did not exhibit deficits. Discussion: These findings suggest that DORAs may improve sleep in AD patients. Further investigations should optimize the dose and duration of DORA-22 treatment and explore additional AD-relevant animal models and cognitive tests

    A Microbe Associated with Sleep Revealed by a Novel Systems Genetic Analysis of the Microbiome in Collaborative Cross Mice.

    Get PDF
    The microbiome influences health and disease through complex networks of host genetics, genomics, microbes, and environment. Identifying the mechanisms of these interactions has remained challenging. Systems genetics in laboratory mice (Mus musculus) enables data-driven discovery of biological network components and mechanisms of host-microbial interactions underlying disease phenotypes. To examine the interplay among the whole host genome, transcriptome, and microbiome, we mapped QTL and correlated the abundance of cecal messenger RNA, luminal microflora, physiology, and behavior in a highly diverse Collaborative Cross breeding population. One such relationship, regulated by a variant on chromosome 7, was the association of Odoribacter (Bacteroidales) abundance and sleep phenotypes. In a test of this association in the BKS.Cg-Dock7m +/+ Leprdb/J mouse model of obesity and diabetes, known to have abnormal sleep and colonization by Odoribacter, treatment with antibiotics altered sleep in a genotype-dependent fashion. The many other relationships extracted from this study can be used to interrogate other diseases, microbes, and mechanisms
    corecore