5 research outputs found

    Relative Sea Level Rise in the Winyah Bay-Waccamaw River Tidal System Over the Last Thirteen Years

    Get PDF
    Prediction of sea level rise (SLR) in response to climate change has been the focus of worldwide research, most focusing on the impact by human development. The research has been limited to estuaries and tidal rivers near harbors dealing with the hydrodynamics of reversing tidal flows. This article focuses on the Waccamaw River National Wildlife Refuge in coastal South Carolina where freshwater unidirectional flow is common. We examined the record of water levels in the Waccamaw and Pee Dee Rivers over the period 2007–2019 and the length of record of the United States Geographical Survey (USGS) gauge at Pawleys Island on the Waccamaw River. The Atlantic Ocean, off the southeastern coast of the US, has experienced accelerated SLR since 2000. National Oceanic and Atmosphere Administration (NOAA) tide gauges from Fort Pulaski on Cockspur Island in Georgia to Beaufort, North Carolina, show significant increase in long-term SLR since then with an average since 2007 of approximately 10 mm y-1. Since the study period was less than the 18.6-year cycle of lunar precession, tidal ranges were expanding for much of the study period resulting in the rate of rise of Mean Higher High Water (MHHW; the average of the highest tide levels during each day) being greater than the rate of increase of Mean Lower Low Water (MLLW; the average of the lowest tide levels during each day) in all ocean stations. We examined water levels at NOAA and USGS gauges from Oyster Creek, in North Inlet to Conway on the Waccamaw River and Near Bucksport on the Pee Dee River. We found mean water levels increased more rapidly with distance from the ocean with an apparent SLR \u3e 40 mm y-1 at Conway on the Waccamaw and Bucksport on the Pee Dee. In contrast to the ocean NOAA gauges, the estuary/river gauges showed more rapid increase of daily minimum water level (an approximation of MLLW) than daily maximum water level (an approximation of MHHW) with an extreme of apparent rise of minimum water levels of 58 mm y-1 at Bucksport on the Pee Dee. Nearly 50% of the increase in apparent SLR was due to an increase in the annual average freshwater flow of the Pee Dee and Waccamaw Rivers. Over the past 13 years the Waccamaw National Wildlife Refuge has experienced an apparent SLR that was more than double that observed at the edge of the ocean. The rise has been greater in the height of daily low water than in the height of daily high water. The increase was driven by both tidal hydrodynamics and an increase in the rate of flow in the Pee Dee and Waccamaw Rivers. These findings have important implications for land managers, policymakers, and homeowners in the region as people in the middle to upper estuaries need to plan for rates of relative SLR rise much greater than the frequently discussed rates in the ocean

    Developing a monthly radiative kernel for surface albedo change from satellite climatologies of Earth\u27s shortwave radiation budget: CACK v1.0

    Get PDF
    Due to the potential for land-use–land-cover change (LULCC) to alter surface albedo, there is need within the LULCC science community for simple and transparent tools for predicting radiative forcings (ΔF) from surface albedo changes (Δαs). To that end, the radiative kernel technique – developed by the climate modeling community to diagnose internal feedbacks within general circulation models (GCMs) – has been adopted by the LULCC science community as a tool to perform offline ΔF calculations for Δαs. However, the codes and data behind the GCM kernels are not readily transparent, and the climatologies of the atmospheric state variables used to derive them vary widely both in time period and duration. Observation-based kernels offer an attractive alternative to GCM-based kernels and could be updated annually at relatively low costs. Here, we present a radiative kernel for surface albedo change founded on a novel, simplified parameterization of shortwave radiative transfer driven with inputs from the Clouds and the Earth\u27s Radiant Energy System (CERES) Energy Balance and Filled (EBAF) products. When constructed on a 16-year climatology (2001–2016), we find that the CERES-based albedo change kernel – or CACK – agrees remarkably well with the mean kernel of four GCMs (rRMSE = 14 %). When the novel parameterization underlying CACK is applied to emulate two of the GCM kernels using their own boundary fluxes as input, we find even greater agreement (mean rRMSE = 7.4 %), suggesting that this simple and transparent parameterization represents a credible candidate for a satellite-based alternative to GCM kernels. We document and compute the various sources of uncertainty underlying CACK and include them as part of a more extensive dataset (CACK v1.0) while providing examples showcasing its application

    Radiative forcing of natural forest disturbances

    Get PDF
    Forest disturbances are major sources of carbon dioxide to the atmosphere, and therefore impact global climate. Biogeophysical attributes, such as surface albedo (reflectivity), further control the climate-regulating properties of forests. Using both tower-based and remotely sensed data sets, we show that natural disturbances from wildfire, beetle outbreaks, and hurricane wind throw can significantly alter surface albedo, and the associated radiative forcing either offsets or enhances the CO2 forcing caused by reducing ecosystem carbon sequestration over multiple years. In the examined cases, the radiative forcing from albedo change is on the same order of magnitude as the CO2 forcing. The net radiative forcing resulting from these two factors leads to a local heating effect in a hurricane-damaged mangrove forest in the subtropics, and a cooling effect following wildfire and mountain pine beetle attack in boreal forests with winter snow. Although natural forest disturbances currently represent less than half of gross forest cover loss, that area will probably increase in the future under climate change, making it imperative to represent these processes accurately in global climate models

    Radiation-Enhanced Therapeutic Targeting of Galectin-1 Enriched Malignant Stroma in Triple Negative Breast Cancer

    Get PDF
    Currently there are no FDA approved targeted therapies for Triple Negative Breast Cancer (TNBC). Ongoing clinical trials for TNBC have focused primarily on targeting the epithelial cancer cells. However, targeted delivery of cytotoxic payloads to the non-transformed tumor associated-endothelium can prove to be an alternate approach that is currently unexplored. The present study is supported by recent findings on elevated expression of stromal galectin-1 in clinical samples of TNBC and our ongoing findings on stromal targeting of radiation induced galectin-1 by the anginex-conjugated arsenic-cisplatin loaded liposomes using a novel murine tumor model. We demonstrate inhibition of tumor growth and metastasis in response to the multimodal nanotherapeutic strategy using a TNBC model with orthotopic tumors originating from 3D tumor tissue analogs (TTA) comprised of tumor cells, endothelial cells and fibroblasts. The ‘rigorous’ combined treatment regimen of radiation and targeted liposomes is also shown to be well tolerated. More importantly, the results presented provide a means to exploit clinically relevant radiation dose for concurrent receptor mediated enhanced delivery of chemotherapy while limiting overall toxicity. The proposed study is significant as it falls in line with developing combinatorial therapeutic approaches for stroma-directed tumor targeting using tumor models that have an appropriate representation of the TNBC microenvironment

    Effects of Influenza Vaccination in the United States During the 2017-2018 Influenza Season.

    No full text
    BACKGROUND: The severity of the 2017-2018 influenza season in the United States was high, with influenza A(H3N2) viruses predominating. Here, we report influenza vaccine effectiveness (VE) and estimate the number of vaccine-prevented influenza-associated illnesses, medical visits, hospitalizations, and deaths for the 2017-2018 influenza season. METHODS: We used national age-specific estimates of 2017-2018 influenza vaccine coverage and disease burden. We estimated VE against medically attended reverse-transcription polymerase chain reaction-confirmed influenza virus infection in the ambulatory setting using a test-negative design. We used a compartmental model to estimate numbers of influenza-associated outcomes prevented by vaccination. RESULTS: The VE against outpatient, medically attended, laboratory-confirmed influenza was 38% (95% confidence interval [CI], 31%-43%), including 22% (95% CI, 12%-31%) against influenza A(H3N2), 62% (95% CI, 50%-71%) against influenza A(H1N1)pdm09, and 50% (95% CI, 41%-57%) against influenza B. We estimated that influenza vaccination prevented 7.1 million (95% CrI, 5.4 million-9.3 million) illnesses, 3.7 million (95% CrI, 2.8 million-4.9 million) medical visits, 109 000 (95% CrI, 39 000-231 000) hospitalizations, and 8000 (95% credible interval [CrI], 1100-21 000) deaths. Vaccination prevented 10% of expected hospitalizations overall and 41% among young children (6 months-4 years). CONCLUSIONS: Despite 38% VE, influenza vaccination reduced a substantial burden of influenza-associated illness, medical visits, hospitalizations, and deaths in the United States during the 2017-2018 season. Our results demonstrate the benefit of current influenza vaccination and the need for improved vaccines
    corecore