5 research outputs found

    Slow light with interleaved p-n junction to enhance performance of integrated Mach-Zehnder silicon modulators

    Get PDF
    Slow light is a very important concept in nanophotonics, especially in the context of photonic crystals. In this work, we apply our previous design of band-edge slow light in silicon waveguide gratings [M. Passoni et al, Opt. Express 26, 8470 (2018)] to Mach-Zehnder modulators based on the plasma dispersion effect. The key idea is to employ an interleaved p-n junction with the same periodicity as the grating, in order to achieve optimal matching between the electromagnetic field profile and the depletion regions of the p-n junction. The resulting modulation efficiency is strongly improved as compared to common modulators based on normal rib waveguides, even in a bandwidth of 20–30 nm near the band edge, while the total insertion loss due to free carriers is not increased. The present concept is promising in view of realizing slow-light modulators for silicon photonics with reduced energy dissipation

    Rotation of two-petal laser beams in the near field of a spiral microaxicon

    Get PDF
    Using a spiral microaxicon with the topological charge 2 and NA = 0.6 operating at a 532-nm wavelength and fabricated by electron-beam lithography, we experimentally demonstrate the rotation of a two-petal laser beam in the near field (several micrometers away from the axicon surface). The estimated rotation rate is 55 °/mm and linearly dependent on the on-axis distance, with the theoretical rotation rate being 53 °/mm. The experimentally measured rotation rate is found to be linear and coincident with the simulation results only on the on-axis segment from 1.5 to 3 mm. The experimentally measured rotation rate is 66 °/mm on the initial on-axis segment from 0 to 1.5 mm and 34 °/mm on the final segment of the beam path from 3 to 4.5 mm. The experimentally achieved rotation rate is higher than rotation rates of similar two-petal laser beams reported to date

    Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector

    Get PDF
    The need for miniaturized, fully integrated semiconductor lasers has stimulated significant research efforts into realizing unconventional configurations that can meet the performance requirements of a large spectrum of applications, ranging from communication systems to sensing. We demonstrate a hybrid, silicon photonics-compatible photonic crystal (PhC) laser architecture that can be used to implement cost-effective, high-capacity light sources, with high side-mode suppression ratio and milliwatt output output powers. The emitted wavelength is set and controlled by a silicon PhC cavity-based reflective filter with the gain provided by a III–V-based reflective semiconductor optical amplifier (RSOA). The high power density in the laser cavity results in a significant enhancement of the nonlinear absorption in silicon in the high Q-factor PhC resonator. The heat generated in this manner creates a tuning effect in the wavelength-selective element, which can be used to offset external temperature fluctuations without the use of active cooling. Our approach is fully compatible with existing fabrication and integration technologies, providing a practical route to integrated lasing in wavelength-sensitive schemes

    Edge-Coupling of O-Band InP Etched-Facet Lasers to Polymer Waveguides on SOI by Micro-Transfer-Printing

    Get PDF
    O-band InP etched facets lasers were heterogeneously integrated by micro-transfer-printing into a 1.54~\mu \text{m} deep recess created in the 3~\mu \text{m} thick oxide layer of a 220 nm SOI wafer. A 7\times 1.5\,\,\mu \text{m}^{2} cross-section, 2 mm long multimode polymer waveguide was aligned to the ridge post-integration by e-beam lithography with \u3c 0.7~\mu \text{m} lateral misalignment and incorporated a tapered silicon waveguide. A 170 nm thick metal layer positioned at the bottom of the recess adjusts the vertical alignment of the laser and serves as a thermal via to sink the heat to the Si substrate. This strategy shows a roadmap for active polymer waveguide-based photonic integrated circuits

    Realization of a Flat-Band Superprism On-Chip from Parallelogram Lattice Photonic Crystals

    Get PDF
    By optimizing the dispersion curve of a parallelogram-based 2D photonic crystal superprism for constant angular group velocity dispersion over a broad bandwidth, we designed a device capable of experimentally demonstrating linear dispersion from 1500 to 1600 nm with clear separation of as many as eight channels, while maintaining a compact footprint
    corecore