4,363 research outputs found

    Nanoscale density fluctuations in swift heavy ion irradiated amorphous SiO2

    Get PDF
    We report on the observation of nanoscale density fluctuations in 2 μm thick amorphous SiO₂ layers irradiated with 185 MeV Au ions. At high fluences, in excess of approximately 5 × 10¹² ions/cm², where the surface is completely covered by ion tracks, synchrotron small angle x-ray scattering measurements reveal the existence of a steady state of density fluctuations. In agreement with molecular dynamics simulations, this steady state is consistent with an ion track “annihilation” process, where high-density regions generated in the periphery of new tracks fill in low-density regions located at the center of existing tracks.The authors acknowledge the Australian Research Council and the Australian Synchrotron Research Program for financial support and thank the staff at the ANU Heavy Ion facility for their continued technical assistance. O.P., F.D., and K.N. acknowledge financial support from the Academy of Finland under its Centre of Excellence program as well as the OPNA project, and grants of computer capacity from CSC

    Dilation Angle and Liquefaction Potential

    Get PDF
    Most of our understandin9 of the liquefaction phenomenon has come from laboratory tests. It would be desirable to express liquefaction resistance in terms of a parameter which can be measured both in the laboratory and in the field. It is proposed that the dilation angle or expansion rate of the sand is such a parameter. It is readily measured in the laboratory from drained simple shear or triaxial tests and in the field from self boring pressuremeter tests. Based on laboratory tests on Ottawa sand a chart is presented for estimating the liquefaction resistance of saturated sands in terms of dilation angle in addition to the usual parameters relative density and blow count. When the chart was used in conjunction with pressuremeter tests, a conservative estimate of liquefaction resistance of a hydraulic fill dam was obtained

    A multiple scale model for tumor growth

    Get PDF
    We present a physiologically structured lattice model for vascular tumor growth which accounts for blood flow and structural adaptation of the vasculature, transport of oxygen, interaction between cancerous and normal tissue, cell division, apoptosis, vascular endothelial growth factor release, and the coupling between these processes. Simulations of the model are used to investigate the effects of nutrient heterogeneity, growth and invasion of cancerous tissue, and emergent growth laws

    Microwave sensors for in situ monitoring of trace metals in polluted water

    Get PDF
    Thousands of pollutants are threatening our water supply, putting at risk human and environmental health. Between them, trace metals are of significant concern, due to their high toxicity at low concentrations. Abandoned mining areas are globally one of the major sources of toxic metals. Nowadays, no method can guarantee an immediate response for quantifying these pollutants. In this work, a novel technique based on microwave spectroscopy and planar sensors for in situ real-time monitoring of water quality is described. The sensors were developed to directly probe water samples, and in situ trial measurements were performed in freshwater in four polluted mining areas in the UK. Planar microwave sensors were able to detect the water pollution level with an immediate response specifically depicted at three resonant peaks in the GHz range. To the authors' best knowledge, this is the first time that planar microwave sensors were tested in situ, demonstrating the ability to use this method for classifying more and less polluted water using a multiple-peak approach

    Bouncing Neutrons and the Neutron Centrifuge

    Get PDF
    The recent observation of the quantum state of the neutron bouncing freely under gravity allows some novel experiments. A method of purifying the ground state is given, and possible applications to the measurement of the electric dipole moment of the neutron and the short distance behaviour of gravity are discussed.Comment: 7 pages, 7 figure

    Vibrational Spectroscopy for Pathology from Biochemical Analysis to Diagnostic Tool

    Get PDF
    Cervical cancer is the second most common cancer in women worldwide with 80% of cases arising in the developing world. The mortality associated with cervical cancer can be reduced if this disease is detected at the early stages of development or at the pre-malignant state (cervical intra-epithelial neoplasia, CIN). The aim of this study was to investigate the potential of Raman spectroscopy as a diagnostic tool to detect biochemical changes accompanying cervical cancer progression. Raman spectra were acquired from proteins, nucleic acids, lipids and carbohydrates in order to gain an insight into the biochemical composition of cells and tissues. Spectra were also obtained from histological samples of normal, CIN and invasive carcinoma tissue from 40 patients. Multivariate analysis of the spectra was carried out to develop a classification model to discriminate normal from abnormal tissue. The results show that Raman spectroscopy displays a high sensitivity to biochemical changes in tissue during disease progression resulting in an exceptional prediction accuracy when discriminating between normal cervical tissue, invasive carcinoma and cervical intra-epithelial neoplasia (CIN). Raman spectroscopy shows enormous clinical potential as a rapid non invasive diagnostic tool for cervical and other cancers

    Hydrodynamic dispersion within porous biofilms

    Get PDF
    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher's equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels' network; (2) the solute's diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport

    On the binary nature of 1RXS J162848.1-415241

    Get PDF
    We present spectroscopy of the optical counterpart to 1RXS J162848.1-41524, also known as the microquasar candidate MCQC J162847-4152. All the data indicate that this X-ray source is not a microquasar, and that it is a single-lined chromospherically active binary system with a likely orbital period of 4.9 days. Our analysis supports a K3IV spectral classification for the star, which is dominant at optical wavelengths. The unseen binary component is most likely a late-type (K7-M) dwarf or a white dwarf. Using the high resolution spectra we have measured the K3 star's rotational broadening to be vsini = 43 +/- 3 km/s and determined a lower limit to the binary mass ratio of q(=M2/M1)>2.0. The high rotational broadening together with the strong CaII H & K / Halpha emission and high-amplitude photometric variations indicate that the evolved star is very chromospherically active and responsible for the X-ray/radio emission.Comment: 15 pages, 5 figures, accepted for publication in Ap

    Refractive change following pseudophakic vitrectomy: a retrospective review

    Get PDF
    Background To assess the occurrence and magnitude of refractive change in pseudophakic eyes undergoing 20 gauge pars plana vitrectomy without scleral buckling and to investigate possible aetiological factors. Methods Retrospective case note review of 87 pseudophakic eyes undergoing 20 gauge pars plana vitrectomy for a variety of vitreo-retinal conditions over a three-year period. Anterior chamber depth (ACD) was measured before and after vitrectomy surgery in 32 eyes. Forty-three pseudophakic fellow eyes were used as controls. Results Eighty-seven eyes (84 patients) were included in the study. Mean spherical equivalent refraction prior to vitrectomy was -0.20 dioptres, which changed to a mean of -0.65 dioptres postoperatively (standard deviation of refractive change 0.59, range-2.13 to 0.75 dioptres) (p < 0.001). Sixty-one of the 87(70%) eyes experienced a myopic shift and 45(52%) eyes had a myopic shift of -0.5 dioptres or more. Mean fellow eye refraction was -0.19 dioptres preoperatively and -0.17 dioptres postoperatively (p = 0.14)(n = 37) Mean ACD preoperatively was 3.29 mm and postoperatively 3.27 mm (p = 0.53) (n = 32) and there was no significant change in ACD with tamponade use. Regression analysis revealed no statistically significant association between changes in anterior chamber depth, as well as a wide variety of other pre-, intra and postoperative factors examined, and the refractive change observed. Conclusion Significant refractive changes occur in some pseudophakic patients undergoing 20 g pars plana vitrectomy. The mean change observed was a small myopic shift but the range was large. The aetiology of the refractive change is uncertain
    corecore