8,798 research outputs found

    Progress in purebred dog health since the Bateson report of 2010

    Get PDF

    VetCompass clinical data points the way forward

    Get PDF

    Challenging conventional wisdom with vigour

    Get PDF

    Improved self-gain in deep submicrometer strained silicon-germanium pMOSFETs with HfSiOx/TiSiN gate stacks

    Get PDF
    The self-gain of surface channel compressively strained SiGe pMOSFETs with HfSiOx/TiSiN gate stacks is investigated for a range of gate lengths down to 55 nm. There is 125% and 700% enhancement in the self-gain of SiGe pMOSFETs compared with the Si control at 100 nm and 55 nm lithographic gate lengths, respectively. This improvement in the self-gain of the SiGe devices is due to 80% hole mobility enhancement compared with the Si control and improved electrostatic integrity in the SiGe devices due to less boron diffusion into the channel. At 55 nm gate length, the SiGe pMOSFETs show 50% less drain induced barrier lowering compared with the Si control devices. Electrical measurements show that the SiGe devices have larger effective channel lengths. It is shown that the enhancement in the self-gain of the SiGe devices compared with the Si control increases as the gate length is reduced thereby making SiGe pMOSFETs with HfSiOx/TiSiN gate stacks an excellent candidate for analog/mixed-signal applications

    Demography and health of Pugs under primary veterinary care in England

    Get PDF

    The cost of systemic corticosteroid-induced morbidity in severe asthma : a health economic analysis

    Get PDF
    The study data-set was supported by the Respiratory Effectiveness Group through their academic partnership with Optimum Patient Care. Ciaran O'Neill was funded under a HRB Research Leader Award (RL/13/16).Peer reviewedPublisher PD

    Radiative corrections for (e,e′p) reactions at GeV energies

    Get PDF
    A general framework for applying radiative corrections to (e,e′p) coincidence reactions at GeV energies is presented, with special emphasis to higher-order bremsstrahlung effects, radiation from the scattered hadron, and the validity of peaking approximations. The sensitivity to the assumptions made in practically applying radiative corrections to (e,e′p) data is extensively discussed. The general framework is tested against experimental data of the 1H(e,e′p) reaction at momentum transfer values larger than 1.0 (GeV/c)^2, where radiative processes become a dominant source of uncertainty. The formulas presented here can easily be modified for any other electron-induced coincidence reaction
    corecore