24 research outputs found

    CE0711

    Get PDF
    Use the URI link below to search the Marine Institute Data Discovery Catalogue for datasets relevant to this report.The Marine Institute with the collaboration of the National University of Galway conducted a multidisciplinary deepwater survey along the continental slope of the Northeast Atlantic. At three selected sites northwest of Ireland and on the northern slopes of the Porcupine Bank, fishing transects were carried out at four depth strata (500m, 1000m 1500m and 1800m) during the day, while oceanographic measurements and plankton and benthic invertebrate sampling was carried out during the night. Data from CTD and ADCP measurements showed following distribution of water masses: The top 700 m was occupied by that of Eastern North Atlantic Water (ENAW) origin which is a basic feature of the upper layer hydrography in the Rockall Trough; small salinity maxima indicated the region associated with the core of the shelf edge current (SEC). At Area 6, immediately north of Porcupine Bank, a salinity maximum at a depth of 900-1000 m indicated the presence of Mediterranean Outflow Water (MOW) with the presence Labrador Sea Water (LSW) at 1800-2000 m. The SEC was identified in both CTD and ADCP transects and was characterised by a number of relatively narrow filaments evident in the salinity data. In terms of benthic invertebrate data, a total of 104 taxa were identified with a maximum number of 33 invertebrate taxa identified per haul (these values were recorded at two 1500m hauls in 2006 and 2007, in Areas 5 and 2, respectively). Overall, no clear relationship between the number of invertebrate species and depth was apparent, however there was some indication that the number of species appears to be more variable in deeper waters. Several species occurred in very large numbers; these were the echinoderms, Cidaris cidaris, Benthegone rosea and Stichopus tremulus and the bivalve, Pseudammusium septemradii. Fisheries data revealed distinct deepwater fish communities that changed with depth and to a lesser extent with area. The number of species increased with depth at all sites to reach a maximum at 1500m before decreasing again at 1800m. At 500m depth the fish community was mainly composed of rabbit fish and rattails with some shelf species present such as hake, ling and silver pout. The 1000m depth strata presented a transition of species composition. The most abundant species overall was Roundnose grenadier which had is highest abundance at 1500m in all three areas but could also be found in the 1000 and 18000m depth strata. Other species of high abundance which also had their highest number of individuals at 1500m were Baird’s smoothhead and other species of grenadiers. Cluster analysis revealed that Roundnose grenadier was a distinct species grouping as was that of Baird’s smoothhead. Species occurrences were similar in all three areas with some regional differences; in area 2, Phycis blennoides, greater forkbeard,occurred among the ten most abundant species while in area 5, species, such as Black Scabbard, Aphanopus carbo, and cut throat eel, Synaphobranchus kaupi, were being caught here in larger numbers while present in the other areas in low numbers. Seven comparative tows were carried out with the Scottish research vessels RV Scotia and indicated that overall similar numbers of species and total number of fish were caught. Size distribution also compared well between the two different vessels, however for some species the numbers or size ranges of fish caught differed

    Measurement of the cross-sections of the electroweak and total production of a Zγ pair in association with two jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This Letter presents the measurement of the fiducial and differential cross-sections of the electroweak production of a Zγ pair in association with two jets. The analysis uses 140 fb−1 of LHC proton–proton collision data taken at √s = 13 TeV recorded by the ATLAS detector during the years 2015–2018. Events with a Z boson candidate decaying into either an e+e− or μ+μ− pair, a photon and two jets are selected. The electroweak component is extracted by requiring a large dijet invariant mass and by using the information about the centrality of the system and is measured with an observed and expected significance well above five standard deviations. The fiducial pp → Zγ jj cross-section for the electroweak production is measured to be 3.6 ± 0.5 fb. The total fiducial cross-section that also includes contributions where the jets arise from strong interactions is measured to be 16.8+2.0 −1.8 fb. The results are consistent with the Standard Model predictions. Differential cross-sections are also measured using the same events and are compared with parton-shower Monte Carlo simulations. Good agreement is observed between data and predictions

    Measurement of the VH,H → ττ process with the ATLAS detector at 13 TeV

    Get PDF
    A measurement of the Standard Model Higgs boson produced in association with a W or Z boson and decaying into a pair of τ-leptons is presented. This search is based on proton-proton collision data collected at √s = 13 TeV by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 140 fb−1. For the Higgs boson candidate, only final states with at least one τ-lepton decaying hadronically (τ →hadrons + vτ ) are considered. For the vector bosons, only leptonic decay channels are considered: Z → ℓℓ and W → ℓvℓ, with ℓ = e, μ. An excess of events over the expected background is found with an observed (expected) significance of 4.2 (3.6) standard deviations, providing evidence of the Higgs boson produced in association with a vector boson and decaying into a pair of τ-leptons. The ratio of the measured cross-section to the Standard Model prediction is μττ VH = 1.28 +0.30 −0.29 (stat.) +0.25 −0.21 (syst.). This result represents the most accurate measurement of the VH(ττ) process achieved to date

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)

    Search for the Zγ decay mode of new high-mass resonances in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a search for narrow, high-mass resonances in the Zγ final state with the Z boson decaying into a pair of electrons or muons. The √s = 13 TeV pp collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb−1. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into Zγ. For spin-0 resonances produced via gluon–gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon–gluon fusion (or quark–antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV

    Search for non-resonant production of semi-visible jets using Run 2 data in ATLAS

    Get PDF
    Semi-visible jets, with a significant contribution to the event's missing transverse momentum, can arise in strongly interacting dark sectors. This results in an event topology where one of the jets can be aligned with the direction of the missing transverse momentum. The first search for semi-visible jets produced via a t-channel mediator exchange is presented. The analysis uses proton-proton collisions with an integrated luminosity of 139 fb−1 and a centre-of-mass energy of 13 TeV, collected with the ATLAS detector during the Run 2 of the LHC. No excess over Standard Model predictions is observed. Assuming a coupling strength of unity between the mediator, a Standard Model quark and a dark quark, mediator masses up to 2.7 TeV are excluded at the 95% confidence level. Upper limits on the coupling strength are also derived

    Searches for exclusive Higgs boson decays into D⁎γ and Z boson decays into D0γ and Ks0γ in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Searches for exclusive decays of the Higgs boson into D⁎γ and of the Z boson into D0γ and Ks0γ can probe flavour-violating Higgs boson and Z boson couplings to light quarks. Searches for these decays are performed with a pp collision data sample corresponding to an integrated luminosity of 136.3 fb−1 collected at s=13TeV between 2016–2018 with the ATLAS detector at the CERN Large Hadron Collider. In the D⁎γ and D0γ channels, the observed (expected) 95% confidence-level upper limits on the respective branching fractions are B(H→D⁎γ)<1.0(1.2)×10−3, B(Z→D0γ)<4.0(3.4)×10−6, while the corresponding results in the Ks0γ channel are B(Z→Ks0γ)<3.1(3.0)×10−6

    Electron and photon energy calibration with the ATLAS detector using LHC Run 2 data

    Get PDF
    This paper presents the electron and photon energy calibration obtained with the ATLAS detector using 140 fb-1 of LHC proton-proton collision data recorded at √(s) = 13 TeV between 2015 and 2018. Methods for the measurement of electron and photon energies are outlined, along with the current knowledge of the passive material in front of the ATLAS electromagnetic calorimeter. The energy calibration steps are discussed in detail, with emphasis on the improvements introduced in this paper. The absolute energy scale is set using a large sample of Z-boson decays into electron-positron pairs, and its residual dependence on the electron energy is used for the first time to further constrain systematic uncertainties. The achieved calibration uncertainties are typically 0.05% for electrons from resonant Z-boson decays, 0.4% at ET ∼ 10 GeV, and 0.3% at ET ∼ 1 TeV; for photons at ET ∼ 60 GeV, they are 0.2% on average. This is more than twice as precise as the previous calibration. The new energy calibration is validated using J/ψ → ee and radiative Z-boson decays

    Search for the decay of the Higgs boson to a Z boson and a light pseudoscalar particle decaying to two photons

    Get PDF
    A search for the decay of the Higgs boson to a Z boson and a light, pseudoscalar particle, a, decaying respectively to two leptons and to two photons is reported. The search uses the full LHC Run 2 proton–proton collision data at √s = 13 TeV, corresponding to 139 fb−1 collected by the ATLAS detector. This is one of the first searches for this specific decay mode of the Higgs boson, and it probes unexplored parameter space in models with axion-like particles (ALPs) and extended scalar sectors. The mass of the a particle is assumed to be in the range 0.1–33 GeV. The data are analysed in two categories: a merged category where the photons from the a decay are reconstructed in the ATLAS calorimeter as a single cluster, and a resolved category in which two separate photons are detected. The main background processes are from Standard Model Z boson production in association with photons or jets. The data are in agreement with the background predictions, and upper limits on the branching ratio of the Higgs boson decay to Za times the branching ratio α = γγ are derived at the 95% confidence level and they range from 0.08% to 2% depending on the mass of the a particle. The results are also interpreted in the context of ALP models

    Measurement of ZZ production cross-sections in the four-lepton final state in pp collisions at √s = 13.6 TeV with the ATLAS experiment

    Get PDF
    This paper reports cross-section measurements of ZZ production in pp collisions at √s = 13.6TeV at the Large Hadron Collider. The data were collected by the ATLAS detector in 2022, and correspond to an integrated luminosity of 29 fb−1. Events in the ZZ → 4ℓ (ℓ = e, μ) final states are selected and used to measure the inclusive and differential cross-sections in a fiducial region defined close to the analysis selections. The inclusive cross-section is further extrapolated to the total phase space with a requirement of 66 <mZ < 116 GeV for both Z bosons, yielding 16.8 ± 1.1 pb. The results are well described by the Standard Model predictions
    corecore