84 research outputs found

    Dissecting complex traits: recent advances in hypertension genomics

    Get PDF
    Genome-wide association scans are beginning to identify risk alleles for a number of complex diseases and traits. Essential hypertension looked as though it would be an exception to this trend after the Wellcome Trust Case Control Consortium data were published in 2007. However, more recent scans and meta-analyses have reversed the fortunes of essential hypertension. A number of loci have been identified, including a new antihypertensive drug target in the guise of the serine/threonine kinase SPAK. This kinase forms part of a novel kinase cascade that regulates the NCCT (Na+/Cl- co-transporter; SLC12A3) in the kidney and is defective in a rare Mendelian hypertension syndrome (Gordon's syndrome). Genome-wide scans are also being used to look for alleles to predict individual response to antihypertensive drugs and their risk of causing side-effects. The results of these are expected in the near future and may finally deliver the long-awaited goal of personalized drug therapy for hypertensive patients

    ROMK expression remains unaltered in a mouse model of familial hyperkalemic hypertension caused by the CUL3Δ403-459 mutation.

    Get PDF
    Familial hyperkalemic hypertension (FHHt) is a rare inherited form of salt-dependent hypertension caused by mutations in proteins that regulate the renal Na(+)-Cl(-) cotransporter NCC Mutations in four genes have been reported to cause FHHt including CUL3 (Cullin3) that encodes a component of a RING E3 ligase. Cullin-3 binds to WNK kinase-bound KLHL3 (the substrate recognition subunit of the ubiquitin ligase complex) to promote ubiquitination and proteasomal degradation of WNK kinases. Deletion of exon 9 from CUL3 (affecting residues 403-459, CUL3(Δ403-459)) causes a severe form of FHHt (PHA2E) that is recapitulated closely in a knock-in mouse model. The loss of functionality of CUL3(Δ403-459) and secondary accumulation of WNK kinases causes substantial NCC activation. This accounts for the hypertension in FHHt but the origin of the hyperkalemia is less clear. Hence, we explored the impact of CUL3(Δ403-459) on expression of the distal secretory K channel, ROMK, both in vitro and in vivo. We found that expressing wild-type but not the CUL3(Δ403-459) mutant form of CUL3 prevented the suppression of ROMK currents by WNK4 expressed in Xenopus oocytes. The mutant CUL3 protein was also unable to affect ROMK-EGFP protein expression at the surface of mouse M-1 cortical collecting duct (CCD) cells. The effects of CUL3 on ROMK expression in both oocytes and M-1 CCD cells was reduced by addition of the neddylation inhibitor, MLN4924. This confirms that neddylation is important for CUL3 activity. Nevertheless, in our knock-in mouse model expressing CUL3(Δ403-459) we could not show any alteration in ROMK expression by either western blotting whole kidney lysates or confocal microscopy of kidney sections. This suggests that the hyperkalemia in our knock-in mouse and human PHA2E subjects with the CUL3(Δ403-459) mutation is not caused by reduced ROMK expression in the distal nephron.British Heart Foundation. Grant Number: PG/13/89/30577This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.14814/phy2.1285

    ROMK expression remains unaltered in a mouse model of familial hyperkalemic hypertension caused by the CUL3Δ403‐459mutation

    Get PDF
    Familial hyperkalemic hypertension (FHHt) is a rare inherited form of salt‐dependent hypertension caused by mutations in proteins that regulate the renal Na+‐Cl‐ cotransporter NCC. Mutations in four genes have been reported to cause FHHt including CUL3 (Cullin3) that encodes a component of a RING E3 ligase. Cullin‐3 binds to WNK kinase‐bound KLHL3 (the substrate recognition subunit of the ubiquitin ligase complex) to promote ubiquitination and proteasomal degradation of WNK kinases. Deletion of exon 9 from CUL3 (affecting residues 403‐459, CUL3Δ403‐459) causes a severe form of FHHt (PHA2E) that is recapitulated closely in a knock‐in mouse model. The loss of functionality of CUL3Δ403‐459 and secondary accumulation of WNK kinases causes substantial NCC activation. This accounts for the hypertension in FHHt but the origin of the hyperkalemia is less clear. Hence, we explored the impact of CUL3Δ403‐459 on expression of the distal secretory K channel, ROMK, both in vitro and in vivo. We found that expressing wild‐type but not the CUL3Δ403‐459 mutant form of CUL3 prevented the suppression of ROMK currents by WNK4 expressed in Xenopus oocytes. The mutant CUL3 protein was also unable to affect ROMK‐EGFP protein expression at the surface of mouse M‐1 cortical collecting duct (CCD) cells. The effects of CUL3 on ROMK expression in both oocytes and M‐1 CCD cells was reduced by addition of the neddylation inhibitor, MLN4924. This confirms that neddylation is important for CUL3 activity. Nevertheless, in our knock‐in mouse model expressing CUL3Δ403‐459 we could not show any alteration in ROMK expression by either western blotting whole kidney lysates or confocal microscopy of kidney sections. This suggests that the hyperkalemia in our knock‐in mouse and human PHA2E subjects with the CUL3Δ403‐459 mutation is not caused by reduced ROMK expression in the distal nephron

    WNK signalling pathways in blood pressure regulation.

    Get PDF
    Hypertension (high blood pressure) is a major public health problem affecting more than a billion people worldwide with complications, including stroke, heart failure and kidney failure. The regulation of blood pressure is multifactorial reflecting genetic susceptibility, in utero environment and external factors such as obesity and salt intake. In keeping with Arthur Guyton's hypothesis, the kidney plays a key role in blood pressure control and data from clinical studies; physiology and genetics have shown that hypertension is driven a failure of the kidney to excrete excess salt at normal levels of blood pressure. There is a number of rare Mendelian blood pressure syndromes, which have shed light on the molecular mechanisms involved in dysregulated ion transport in the distal kidney. One in particular is Familial hyperkalemic hypertension (FHHt), an autosomal dominant monogenic form of hypertension characterised by high blood pressure, hyperkalemia, hyperchloremic metabolic acidosis, and hypercalciuria. The clinical signs of FHHt are treated by low doses of thiazide diuretic, and it mirrors Gitelman syndrome which features the inverse phenotype of hypotension, hypokalemic metabolic alkalosis, and hypocalciuria. Gitelman syndrome is caused by loss of function mutations in the thiazide-sensitive Na/Cl cotransporter (NCC); however, FHHt patients do not have mutations in the SCL12A3 locus encoding NCC. Instead, mutations have been identified in genes that have revealed a key signalling pathway that regulates NCC and several other key transporters and ion channels in the kidney that are critical for BP regulation. This is the WNK kinase signalling pathway that is the subject of this review.KMO and MM would like to thank the British Heart Foundation for support in some of their work cited in this review (PG/13/89/30577)

    Targeted disruption of the Kcnj5 gene in the female mouse lowers aldosterone levels.

    Get PDF
    Aldosterone is released from adrenal zona glomerulosa (ZG) cells and plays an important role in Na and K homoeostasis. Mutations in the human inwardly rectifying K channel CNJ type (KCNJ) 5 (KCNJ5) gene encoding the G-coupled inwardly rectifying K channel 4 (GIRK4) cause abnormal aldosterone secretion and hypertension. To better understand the role of wild-type (WT) GIRK4 in regulating aldosterone release, we have looked at aldosterone secretion in a Kcnj5 knockout (KO) mouse. We found that female but not male KO mice have reduced aldosterone levels compared with WT female controls, but higher levels of aldosterone after angiotensin II (Ang-II) stimulation. These differences could not be explained by sex differences in aldosterone synthase (Cyp11B2) gene expression in the mouse adrenal. Using RNAseq analysis to compare WT and KO adrenals, we showed that females also have a much larger set of differentially expressed adrenal genes than males (395 compared with 7). Ingenuity Pathway Analysis (IPA) of this gene set suggested that peroxisome proliferator activated receptor (PPAR) nuclear receptors regulated aldosterone production and altered signalling in the female KO mouse, which could explain the reduced aldosterone secretion. We tested this hypothesis in H295R adrenal cells and showed that the selective PPARα agonist fenofibrate can stimulate aldosterone production and induce Cyp11b2. Dosing mice in vivo produced similar results. Together our data show that Kcnj5 is important for baseline aldosterone secretion, but its importance is sex-limited at least in the mouse. It also highlights a novel regulatory pathway for aldosterone secretion through PPARα that may have translational potential in human hyperaldosteronism

    Combinations of Maternal KIR and Fetal HLA-C Genes Influence the Risk of Preeclampsia and Reproductive Success

    Get PDF
    Preeclampsia is a serious complication of pregnancy in which the fetus receives an inadequate supply of blood due to failure of trophoblast invasion. There is evidence that the condition has an immunological basis. The only known polymorphic histocompatibility antigens on the fetal trophoblast are HLA-C molecules. We tested the idea that recognition of these molecules by killer immunoglobulin receptors (KIRs) on maternal decidual NK cells is a key factor in the development of preeclampsia. Striking differences were observed when these polymorphic ligand: receptor pairs were considered in combination. Mothers lacking most or all activating KIR (AA genotype) when the fetus possessed HLA-C belonging to the HLA-C2 group were at a greatly increased risk of preeclampsia. This was true even if the mother herself also had HLA-C2, indicating that neither nonself nor missing-self discrimination was operative. Thus, this interaction between maternal KIR and trophoblast appears not to have an immune function, but instead plays a physiological role related to placental development. Different human populations have a reciprocal relationship between AA frequency and HLA-C2 frequency, suggesting selection against this combination. In light of our findings, reproductive success may have been a factor in the evolution and maintenance of human HLA-C and KIR polymorphisms

    Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia

    Get PDF
    Deletion of exon 9 from Cullin‐3 (CUL3, residues 403–459: CUL3Δ403–459) causes pseudohypoaldosteronism type IIE (PHA2E), a severe form of familial hyperkalaemia and hypertension (FHHt). CUL3 binds the RING protein RBX1 and various substrate adaptors to form Cullin‐RING‐ubiquitin‐ligase complexes. Bound to KLHL3, CUL3‐RBX1 ubiquitylates WNK kinases, promoting their ubiquitin‐mediated proteasomal degradation. Since WNK kinases activate Na/Cl co‐transporters to promote salt retention, CUL3 regulates blood pressure. Mutations in both KLHL3 and WNK kinases cause PHA2 by disrupting Cullin‐RING‐ligase formation. We report here that the PHA2E mutant, CUL3Δ403–459, is severely compromised in its ability to ubiquitylate WNKs, possibly due to altered structural flexibility. Instead, CUL3Δ403–459 auto‐ubiquitylates and loses interaction with two important Cullin regulators: the COP9‐signalosome and CAND1. A novel knock‐in mouse model of CUL3WT/Δ403–459 closely recapitulates the human PHA2E phenotype. These mice also show changes in the arterial pulse waveform, suggesting a vascular contribution to their hypertension not reported in previous FHHt models. These findings may explain the severity of the FHHt phenotype caused by CUL3 mutations compared to those reported in KLHL3 or WNK kinases

    A systematic review and meta-analysis of thiazide-induced hyponatraemia: time to reconsider electrolyte monitoring regimens after thiazide initiation?

    Get PDF
    Aims: Hyponatraemia is one of the major adverse effects of thiazide and thiazide-like diuretics and the leading cause of drug-induced hyponatraemia requiring hospital admission. We sought to review and analyze all published cases of this important condition. Methods: Ovid Medline, Embase, Web of Science and PubMed electronic databases were searched to identify all relevant articles published before October 2013. A proportions meta-analysis was undertaken. Results: One hundred and two articles were identified of which 49 were single patient case reports. Meta-analysis showed that mean age was 75 (95% CI 73, 77) years, 79% were women (95% CI 74, 82) and mean body mass index was 25 (95% CI 20, 30) kg m−2. Presentation with thiazide-induced hyponatraemia occurred a mean of 19 (95% CI 8, 30) days after starting treatment, with mean trough serum sodium concentration of 116 (95% CI 113, 120) mm and serum potassium of 3.3 (95% CI 3.0, 3.5) mm. Mean urinary sodium concentration was 64 mm (95% CI 47, 81). The most frequently reported drugs were hydrochlorothiazide, indapamide and bendroflumethiazide. Conclusions: Patients with thiazide-induced hyponatraemia were characterized by advanced age, female gender, inappropriate saliuresis and mild hypokalaemia. Low BMI was not found to be a significant risk factor, despite previous suggestions. The time from thiazide initiation to presentation with hyponatraemia suggests that the recommended practice of performing a single investigation of serum biochemistry 7–14 days after thiazide initiation may be insufficient or suboptimal. Further larger and more systematic studies of thiazide-induced hyponatraemia are required

    A systematic review and meta-analysis of thiazide-induced hyponatraemia: time to reconsider electrolyte monitoring regimens after thiazide initiation?

    Get PDF
    Aims: Hyponatraemia is one of the major adverse effects of thiazide and thiazide-like diuretics and the leading cause of drug-induced hyponatraemia requiring hospital admission. We sought to review and analyze all published cases of this important condition. Methods: Ovid Medline, Embase, Web of Science and PubMed electronic databases were searched to identify all relevant articles published before October 2013. A proportions meta-analysis was undertaken. Results: One hundred and two articles were identified of which 49 were single patient case reports. Meta-analysis showed that mean age was 75 (95% CI 73, 77) years, 79% were women (95% CI 74, 82) and mean body mass index was 25 (95% CI 20, 30) kg m−2. Presentation with thiazide-induced hyponatraemia occurred a mean of 19 (95% CI 8, 30) days after starting treatment, with mean trough serum sodium concentration of 116 (95% CI 113, 120) mm and serum potassium of 3.3 (95% CI 3.0, 3.5) mm. Mean urinary sodium concentration was 64 mm (95% CI 47, 81). The most frequently reported drugs were hydrochlorothiazide, indapamide and bendroflumethiazide. Conclusions: Patients with thiazide-induced hyponatraemia were characterized by advanced age, female gender, inappropriate saliuresis and mild hypokalaemia. Low BMI was not found to be a significant risk factor, despite previous suggestions. The time from thiazide initiation to presentation with hyponatraemia suggests that the recommended practice of performing a single investigation of serum biochemistry 7–14 days after thiazide initiation may be insufficient or suboptimal. Further larger and more systematic studies of thiazide-induced hyponatraemia are required
    corecore