2,714 research outputs found
Locked and Unlocked Polygonal Chains in 3D
In this paper, we study movements of simple polygonal chains in 3D. We say
that an open, simple polygonal chain can be straightened if it can be
continuously reconfigured to a straight sequence of segments in such a manner
that both the length of each link and the simplicity of the chain are
maintained throughout the movement. The analogous concept for closed chains is
convexification: reconfiguration to a planar convex polygon. Chains that cannot
be straightened or convexified are called locked. While there are open chains
in 3D that are locked, we show that if an open chain has a simple orthogonal
projection onto some plane, it can be straightened. For closed chains, we show
that there are unknotted but locked closed chains, and we provide an algorithm
for convexifying a planar simple polygon in 3D with a polynomial number of
moves.Comment: To appear in Proc. 10th ACM-SIAM Sympos. Discrete Algorithms, Jan.
199
Exact solution and interfacial tension of the six-vertex model with anti-periodic boundary conditions
We consider the six-vertex model with anti-periodic boundary conditions
across a finite strip. The row-to-row transfer matrix is diagonalised by the
`commuting transfer matrices' method. {}From the exact solution we obtain an
independent derivation of the interfacial tension of the six-vertex model in
the anti-ferroelectric phase. The nature of the corresponding integrable
boundary condition on the spin chain is also discussed.Comment: 18 pages, LaTeX with 1 PostScript figur
SYSTEMS-2: a randomised phase II study of radiotherapy dose escalation for pain control in malignant pleural mesothelioma
SYSTEMS-2 is a randomised study of radiotherapy dose escalation for pain control in 112 patients with malignant pleural mesothelioma (MPM). Standard palliative (20Gy/5#) or dose escalated treatment (36Gy/6#) will be delivered using advanced radiotherapy techniques and pain responses will be compared at week 5. Data will guide optimal palliative radiotherapy in MPM
Technological aids for the rehabilitation of memory and executive functioning in children and adolescents with acquired brain injury (Review).
No abstract available
Optimization of double pulse pumping for Ni-like Sm x-ray lasers
We report a systematic study of double pulse pumping of the Ni-like Sm x-ray laser at 73 Angstrom, currently the shortest wavelength saturated x-ray laser. It is found that the Sm x-ray laser output can change by orders of magnitude when the intensity ratio of the pumping pulses and their relative delay are varied. Optimum pumping conditions are found and interpreted in terms of a simple model. (C) 1999 American Institute of Physics. [S0021-8979(99)07102-9]
An attempt to observe economy globalization: the cross correlation distance evolution of the top 19 GDP's
Economy correlations between the 19 richest countries are investigated
through their Gross Domestic Product increments. A distance is defined between
increment correlation matrix elements and their evolution studied as a function
of time and time window size. Unidirectional and Bidirectional Minimal Length
Paths are generated and analyzed for different time windows. A sort of critical
correlation time window is found indicating a transition for best observations.
The mean length path decreases with time, indicating stronger correlations. A
new method for estimating a realistic minimal time window to observe
correlations and deduce macroeconomy conclusions from such features is thus
suggested.Comment: to be published in the Dyses05 proceedings, in Int. J. Mod Phys C 15
pages, 5 figures, 1 tabl
Dynein Modifiers in C. elegans: Light Chains Suppress Conditional Heavy Chain Mutants
Cytoplasmic dynein is a microtubule-dependent motor protein that functions in mitotic cells during centrosome separation, metaphase chromosome congression, anaphase spindle elongation, and chromosome segregation. Dynein is also utilized during interphase for vesicle transport and organelle positioning. While numerous cellular processes require cytoplasmic dynein, the mechanisms that target and regulate this microtubule motor remain largely unknown. By screening a conditional Caenorhabditis elegans cytoplasmic dynein heavy chain mutant at a semipermissive temperature with a genome-wide RNA interference library to reduce gene functions, we have isolated and characterized twenty dynein-specific suppressor genes. When reduced in function, these genes suppress dynein mutants but not other conditionally mutant loci, and twelve of the 20 specific suppressors do not exhibit sterile or lethal phenotypes when their function is reduced in wild-type worms. Many of the suppressor proteins, including two dynein light chains, localize to subcellular sites that overlap with those reported by others for the dynein heavy chain. Furthermore, knocking down any one of four putative dynein accessory chains suppresses the conditional heavy chain mutants, suggesting that some accessory chains negatively regulate heavy chain function. We also identified 29 additional genes that, when reduced in function, suppress conditional mutations not only in dynein but also in loci required for unrelated essential processes. In conclusion, we have identified twenty genes that in many cases are not essential themselves but are conserved and when reduced in function can suppress conditionally lethal C. elegans cytoplasmic dynein heavy chain mutants. We conclude that conserved but nonessential genes contribute to dynein function during the essential process of mitosis
Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects
The effects of the ion Larmor radius on magnetic reconnection are
investigated by means of numerical simulations, with a Hamiltonian gyrofluid
model. In the linear regime, it is found that ion diamagnetic effects decrease
the growth rate of the dominant mode. Increasing ion temperature tends to make
the magnetic islands propagate in the ion diamagnetic drift direction. In the
nonlinear regime, diamagnetic effects reduce the final width of the island.
Unlike the electron density, the guiding center density does not tend to
distribute along separatrices and at high ion temperature, the electrostatic
potential exhibits the superposition of a small scale structure, related to the
electron density, and a large scale structure, related to the ion
guiding-center density
Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects
The effects of the ion Larmor radius on magnetic reconnection are
investigated by means of numerical simulations, with a Hamiltonian gyrofluid
model. In the linear regime, it is found that ion diamagnetic effects decrease
the growth rate of the dominant mode. Increasing ion temperature tends to make
the magnetic islands propagate in the ion diamagnetic drift direction. In the
nonlinear regime, diamagnetic effects reduce the final width of the island.
Unlike the electron density, the guiding center density does not tend to
distribute along separatrices and at high ion temperature, the electrostatic
potential exhibits the superposition of a small scale structure, related to the
electron density, and a large scale structure, related to the ion
guiding-center density
- …