55 research outputs found

    Nano-scale Flexible Interphase in a Glass Fiber/Epoxy Resin System Obtained by Admicellar Polymerization

    Get PDF
    Organosilane coupling agents are widely used in the composites industry to improve the wetting of inorganic reinforcements by low surface energy resins. An increased wettability is often a harbinger of better mechanical properties in a structural composite. Silane coatings effectively increase the spreading of liquid matrixes over glass reinforcement by altering the surface energetics of glass, not by extensive coverage, but by eradication of the high-energy sites present in the oxide surface. Commercial sizings often applied to glass fibers contain up to 10% of the active silane agent, while the remaining 90% is a mixture of lubricants, surfactants, anti-stats, and film formers. Recent investigations have demonstrated that non-reactive components tend to remain in high concentrations within the interphase, thus weakening the resin network crosslink density and increasing the potential for water ingress. Further, sizing formulations are proprietary and designed for specific resin system, which make them expensive, consequently limiting their widespread use. In this paper, admicellar polymerization, a versatile technique to prepare elastomeric thin films of styrene-isoprene copolymer and polystyrene on the surface of random glass-fiber mats is presented. This hydrophobic coating of monolayer thickness applied to the glass fibers is not expected to disrupt the matrix cross-linking reaction; and due to its higher elastic modulus, is believed to cause a change in the stress distribution along the fiber length. Admicellar-modified reinforcements were impregnated with an epoxy resin system: EPON 815C/EPICURE 3232, and molded by Resin Transfer Molding (RTM) into disk shaped parts. Tensile strength, stiffness and interlaminar shear strength (ILSS) were measured for the flexible interphase composites, and compared to parts containing commercially sized and bare fibers. Void fraction, void size and shape distributions, as well as water diffusivity were investigated for each system.YesPeer reviewed and presented at the 18th International Conference of the Polymer processing Society

    Creating the Deep Space Environment for Testing the James Webb Space Telescope (JWST) at NASA Johnson Space Center's Chamber A

    Get PDF
    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive modifications, and describe the new capabilities of the chamber
    corecore