3 research outputs found

    "These Things Don't Work." Young People's Views on Harm Minimization Strategies as a Proxy for Self-Harm : A Mixed Methods Approach

    Get PDF
    Although UK clinical guidelines make tentative recommendations for "harm minimization" strategies for repeated self-harm, this is in the absence of empirical evidence supporting their acceptability or effectiveness. We explore young people's views of harm minimization strategies (e.g., snapping elastic bands on skin, drawing on skin with red ink), as a proxy for self-harm. In this mixed methods study we examine data (secondary analysis) from: (1) an online questionnaire (N = 758) observing the frequency of these strategies being used as a form of self-harm, and as a form of alternative coping (viewed as distinct from self-harming), and (2) semi-structured interviews (N = 45), using thematic analysis to identify themes related to harm minimization. Predominant themes suggest that many young people viewed harm minimization strategies as a proxy for self-harm as ineffective. Where such strategies were reported as helpful, their utility was reported to be short-lived or situation-specific. Findings from both studies indicate that some young people described using harm minimization (e.g., elastic band snapping) as a form of self-harm (e.g., to break the skin). Harm minimization strategies should not be recommended in isolation and their use must be monitored. Further research is urgently needed to develop an evidence base that informs practice

    Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis

    No full text
    There is no effective treatment for amyotrophic lateral sclerosis (ALS), a devastating motor neuron disease. However, discovery of a G4C2 repeat expansion in the C9ORF72 gene as the most common genetic cause of ALS has opened up new avenues for therapeutic intervention for this form of ALS. G4C2 repeat expansion RNAs and proteins of repeating dipeptides synthesized from these transcripts are believed to play a key role in C9ORF72-associated ALS (c9ALS). Therapeutics that target G4C2 RNA, such as antisense oligonucleotides (ASOs) and small molecules, are thus being actively investigated. A limitation in moving such treatments from bench to bedside is a lack of pharmacodynamic markers for use in clinical trials. We explored whether poly(GP) proteins translated from G4C2 RNA could serve such a purpose. Poly(GP) proteins were detected in cerebrospinal fluid (CSF) and in peripheral blood mononuclear cells from c9ALS patients and, notably, from asymptomatic C9ORF72 mutation carriers. Moreover, CSF poly(GP) proteins remained relatively constant over time, boding well for their use in gauging biochemical responses to potential treatments. Treating c9ALS patient cells or a mouse model of c9ALS with ASOs that target G4C2 RNA resulted in decreased intracellular and extracellular poly(GP) proteins. This decrease paralleled reductions in G4C2 RNA and downstream G4C2 RNA-mediated events. These findings indicate that tracking poly(GP) proteins in CSF could provide a means to assess target engagement of G4C2 RNA-based therapies in symptomatic C9ORF72 repeat expansion carriers and presymptomatic individuals who are expected to benefit from early therapeutic intervention

    Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis

    No full text
    There is no effective treatment for amyotrophic lateral sclerosis (ALS), a devastating motor neuron disease. However, discovery of a G4C2 repeat expansion in the C9ORF72 gene as the most common genetic cause of ALS has opened up new avenues for therapeutic intervention for this form of ALS. G4C2 repeat expansion RNAs and proteins of repeating dipeptides synthesized from these transcripts are believed to play a key role in C9ORF72-associated ALS (c9ALS). Therapeutics that target G4C2 RNA, such as antisense oligonucleotides (ASOs) and small molecules, are thus being actively investigated. A limitation in moving such treatments from bench to bedside is a lack of pharmacodynamic markers for use in clinical trials. We explored whether poly(GP) proteins translated from G4C2 RNA could serve such a purpose. Poly(GP) proteins were detected in cerebrospinal fluid (CSF) and in peripheral blood mononuclear cells from c9ALS patients and, notably, from asymptomatic C9ORF72 mutation carriers. Moreover, CSF poly(GP) proteins remained relatively constant over time, boding well for their use in gauging biochemical responses to potential treatments. Treating c9ALS patient cells or a mouse model of c9ALS with ASOs that target G4C2 RNA resulted in decreased intracellular and extracellular poly(GP) proteins. This decrease paralleled reductions in G4C2 RNA and downstream G4C2 RNA-mediated events. These findings indicate that tracking poly(GP) proteins in CSF could provide a means to assess target engagement of G4C2 RNA-based therapies in symptomatic C9ORF72 repeat expansion carriers and presymptomatic individuals who are expected to benefit from early therapeutic intervention. 201
    corecore